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Abstract

Network traffic exhibits fractal or scaling properties such as self-similarity, long-range dependence

(LRD) and multifractality. This has implications for network performance, including higher buffer

losses than those predicted by classical teletraffic models. Though real traffic is expected to change

its behavior over time, few studies have addressed the case of time-varying fractal parameters,

and almost all of them rely on constant-length windows. Identifying the boundaries of segments

with homogeneous scaling parameters will be useful for the real-time application of algorithms

that exploit the fractal properties of network traffic (i.e. connection admission control, or effective

bandwidth estimators). This thesis deals with the estimation of the fractal parameters of network

traffic when such parameters are not stationary and the development of algorithms capable of

segmenting traffic in regions whose scaling parameters remain (approximately) constant.

The Discrete Wavelet Transform (DWT)-based LogScale Diagram (LD) is nowadays considered

the best and most efficient estimator of fractal parameters due to its multiscale analysis of variance.

On the other hand, DWT’s resolution coarsens at the higher time scales, and it lacks of shift invari-

ance, making the results dependent on the time shifts of the original signal. This is undesirable for

our purposes, and that is why we turned our attention towards alternative, redundant wavelet-based

transforms that avoid DWT’s limitations. The Wavelet Packet (WPT) is a frequency-redundant

transform which allows total flexibility when choosing the basis, either orthogonal, undercomplete

or overcomplete. Our first contribution has been the development of a WPT-based estimator called

the Wavelet Packet variance map, which is a first step towards a time-varying basis analysis in

which the signal is studied with a subband decomposition scheme that adapts to the spectral prop-

erties of the time series under study. The (static) WPT-based analysis applied to real traffic traces

has shown clear evidence of the non-stationarity of their scaling parameters.

We then turned our attention towards time-redundant transforms such as the Maximal Overlap

DWT (MODWT), which can be considered the counterpart of the WPT in the time domain. The

MODWT has the nice properties of scale-constant resolution and shift invariance, though at the

price of introducing a non-negligible scale-dependent correlation. Given this drawback, we explored

the signal processing literature looking for other transforms that could provide a trade-off between

correlation and time resolution, finding the Dual Tree WT (DTWT), which provides near-time-shift

invariance and a moderate correlation, while effectively doubling the sampling rate of the classical

DWT.
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2 ABSTRACT

With these tools we developed our second contribution, a trace segmenting algorithm composed

of three blocks: a wavelet transform, a variance change detector, and a clustering and alignment

detection method based on the Hough Transform. If the scaling parameters of traffic change at

a given moment, so does the complete variance structure at the whole range of scales. Therefore,

if a change point detection algorithm is applied at the output of the wavelet transform monitors

the variance at every scale, a change of the scaling parameters can be detected as a simultaneous,

time-aligned variance change across scales. A final step of clustering and alignment of the changes

would provide the boundaries of the constant-scaling segment. Our approach is more accurate than

the constant length window-based methods, since we can localize the variance-transition points to

any position and scale.

The thesis presents the results obtained by combining the DWT, MODWT or DTWT wavelet

transforms together with two variance change detection algorithms (the Iterated Cumulative Sum

of Squares and the Schwarz Information Criterion) and the alignment method. We study the per-

formance of the algorithms in presence of mean, variance and Hurst parameter changes, including

assessments of the empirical power of the tests. A progressive (in the sense of near-real-time) version

of our algorithm is also discussed. The methods are applied to both synthetic traces (for valida-

tion and statistical characterization) and real traffic traces, which have been found to have higher

variations of their scaling properties than those usually reported in the literature.



Resumen

El tráfico transportado por las redes de ordenadores presenta caracteŕısticas fractales como la au-

tosimilitud, la dependencia a largo plazo o la multifractalidad. Este hecho tiene consecuencias en

el rendimiento de las redes, provocando desbordamientos de colas y pérdidas mucho mayores que

las previstas por los modelos clásicos de teletráfico. Pese a la alta variabilidad del tráfico, hay

pocos estudios sobre la no estacionariedad de los parámetros fractales, y casi todos los estudios

disponibles usan ventanas temporales de longitud fija. La correcta identificación de los instantes

en que el tráfico cambia sus caracteŕısticas seŕıa de gran utilidad a los algoritmos que explotan las

propiedades fractales del tráfico, como por ejemplo ciertos controles de admisión de conexiones o

algunos estimadores de ancho de banda efectivo. Esta tesis se centra en la estimación de dichos

parámetros y la segmentación del tráfico en fragmentos homogéneos cuya fractalidad es aproxi-

madamente constante.

El LogScale Diagram (LD), basado en la Transformada Wavelet Discreta (DWT), es considerado

como el mejor y más eficiente estimador de parámetros fractales gracias a su análisis multiescala de

la varianza. Sin embargo la resolución de la DWT a las escalas temporales elevadas es muy baja, y

además carece de invarianza frente a desplazamientos, lo que provoca que los resultados dependan

de la posición de la señal original. Esto no es lo más adecuado para nuestros objetivos, y por

ello hemos considerado el uso alternativo de transformadas wavelet redundantes que nos permitan

superar las limitaciones de la DWT. La transformada Wavelet Packet (WPT) es redundante en

frecuencia y permite una flexibilidad total en la elección de la base de la descomposición, pudiendo

ser ésta ortogonal, incompleta o sobrecompleta. Nuestra primera contribución ha consistido en

el desarrollo de un estimador basado en WPT y denominado Wavelet Packet variance map, que

constituye un primer paso hacia un análisis temporal en el que la descomposición de la señal en

subbandas se adapta a las propiedades espectrales de la serie temporal. El análisis (estático) WPT

aplicado a trazas reales de tráfico ha dado como resultado evidencias de la no estacionariedad de

los parámetros de escalado.

A continuación centramos nuestra atención en las transformadas redundantes en tiempo como

la Maximal Overlap DWT (MODWT), que puede ser considerada la homóloga de la WPT en el

dominio temporal. La MODWT presenta las propiedades de ser invariante al desplazamiento y de

tener una resolución constante a todas las escalas; por contra introduce un alto nivel de correlación

que se incrementa con la escala. Dado este inconveniente se ha realizado una búsqueda de otras
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4 RESUMEN

transformadas que proporcionen un compromiso entre la correlación y la resolución temporal. La

Dual Tree WT (DTWT) proporciona quasi-invarianza a desplazamiento al coste de una correlación

mı́nima, pero ofreciendo una resolución temporal que dobla la de la DWT clásica.

A partir de estas herramientas hemos desarrollado nuestra segunda contribución, un algoritmo

de segmentación compuesto de tres elementos: una transformada wavelet, un algoritmo de detección

de cambios de varianza, y un algoritmo de agrupamiento y alineación basado en la transformada de

Hough. Cuando los parámetros fractales cambian en un instante dado, también lo hace la estructura

completa de la varianza en todo el rango de escalas temporales. Por tanto, si se aplica un detector

de cambio de varianza a cada escala, podemos detectar los cambios de fractalidad mediante la

alineación de cambios a lo largo de todas las escalas. Un paso final de agrupación y alineamiento

de los puntos de cambio de varianza proporciona la segmentación en fragmentos con caracteŕısticas

fractales homogéneas. Nuestro método es más preciso que los basados en ventanas de longitud

constante, ya que nos permite localizar los cambios de varianza en cualquier posición temporal y a

cualquier escala.

Esta tesis presenta los resultados obtenidos mediante la combinación de las transformadas DWT,

MODWT y DTWT, de dos métodos de detección de cambios de varianza (Iterated Cumulative

Sum of Squares y Schwarz Information Criterion) y el método de alineación. Hemos estudiado

el comportamiento de los algoritmos en presencia de cambios de media, varianza y parámetro de

Hurst, incluyendo evaluaciones emṕıricas de la potencia de los tests. También se presenta una

versión progresiva del algoritmo que constituye un primer paso hacia el análisis en tiempo real. Los

métodos se han aplicado sobre trazas sintéticas (para evaluación y caracterización estad́ıstica) y

sobre trazas reales de tráfico, en las cuales se han encontrado variaciones de los parámetros fractales

mucho más pronunciadas que los publicados en otros estudios.
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nicza (Cracow, Poland) with whom I have shared some periods of intense work during our mutual

visits to Barcelona and Cracow.

I would also like to mention some UPC students whose BsC or MsC theses was related to the

analysis of network traffic and I had the pleasure of advise: Xavier Hernández, Glòria Ferrer, Sergi
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Introduction

Network traffic modeling

The availability of good stochastic models of network traffic is key to developing protocols and

services. A precise statistical characterization of packet interarrival time, packet size distribution,

instantaneous bitrate and connection arrival rate helps engineers to design network equipment,

ensure its correct operation and evaluate its performance under different load conditions. All these

magnitudes are usually studied as unidimensional or multidimensional time series, and can be

captured from passive network monitors1 that record the arrival time and the size of every packet.

The classical traffic models developed for the telephone network more than a century ago, such

as the Erlang and Engset models, are based on exponential distributions, Poisson arrival processes,

and Markov chains [Kle76]. These models are memoryless, a property of the exponential distribution

meaning that past events do not have influence on the future behavior of the process, i.e., the traffic

process has no time correlation. This assumption is quite accurate for telephone traffic, which is

usually assumed to be generated by infinite populations with independent customers, and has been

successfully used by telephone engineers in the last decades.

In the early days of computer networks and packet switching other models were developed for

the new traffic sources, giving birth to the discipline known as queueing theory. These models gen-

erally assumed uncorrelated and independent sources, and were used for network dimensioning and

performance evaluation. But as networks and protocols grew in complexity the results obtained

with the models and those found in reality diverged more and more. Modern network applications

such as World Wide Web, FTP, Telnet, or video streaming present correlation and show differen-

tiated traffic patterns at different time scales [PF95]; some protocols, such as TCP, have memory

and are capable of maintaining the state of the connection and perform retransmissions [Ste94],

thus introducing correlation in network traffic; and some traffic sources are even intrinsically cor-

related, such as certain variable bit rate (VBR) video codecs based on motion estimation (see

for example [GW94]). The classical models failed to incorporate these correlations. More complex

but still Poisson-based models were developed, such as the Correlated Interarrival Poisson Process

(CIPP) [MDK99], but there was still a gap between reality and theory.

1such as Ethereal, an open source tool (http://www.ethereal.com)
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8 INTRODUCTION

An additional problem was the lack of accuracy of the traffic capturing devices, usually built

around standard network interface cards (NICs) which were not designed for high-performance

monitoring tasks but for normal operation. These devices were not able to provide accurate times-

tamps nor ensure the capture of all packets at wire speed, and therefore the traces produced by such

monitoring systems were prone to errors and a hence were not a good source for stochastic models.

The progress of technology made possible the capture of traffic traces with accurate timestamps

around the end of the 1980s [LW91], thus allowing a really accurate characterization of network

traffic.

Fractal properties of network traffic

The first studies

In a widely appraised paper, Leland, Taqqu, Willinger and Wilson analyzed the traffic at the Eth-

ernet network of Bellcore Laboratories2 and showed that it presented fractal properties [LTWW94].

Fractals were developed by Mandelbrot in the 1960s [Man83], and their main property is that they

have the same “look” when observed at any scale, either fine or coarse; i.e., if we zoom a fractal

image, it will always look the same. This property has been found in several natural phenomena (the

crystal structure of snow flakes, or the shape of certain tree leafs, for example) and is well-known

to be a typical property of time series studied in fields such as hydrology (river annual minimum

and maximum levels), aerodynamics (air turbulences), or financial time series (stock prices).

What does it mean to zoom a time series? Consider the example of the instantaneous bitrate

series. It consists of defining a certain time window δ over which we sum the sizes of the arrived

packets. Let’s say that we record the number of bits arrived over a window δ1 = 10ms. If we further

aggregate the series with a window length of δ1 = 100ms, we are looking at the time series in a

coarser time scale; i.e., we are “zooming out” the series.

Fractality was detected in the Bellcore traces: the intrinsic variability (burstiness) observed at

the finer time scales is maintained even at the coarser time scales, contrary to what is predicted

by classical, Poisson-based models, in which traffic is smoothed at the coarser scales by the ef-

fect of statistical multiplexing. Figure 1 illustrates this effect. Since the coarser time scales of a

process correspond to the lower frequencies of the spectrum, fractal processes are usually related

to the concept of Long-Range Dependence (LRD), which in turn is linked with a slow-decaying

autocorrelation. LRD processes are said to have memory, contrary to the Short-Range Dependent,

memoryless Poisson process.

After the seminal paper of Leland et al. which reported self-similarity in Ethernet, several au-

thors examined other networks and traffic sources. Just to mention some of the most outstanding

contributions, Garrett and Willinger [GW94] studied the long-range dependence in variable-bit-

rate (VBR) video, finding strong low-frequency components. Fractality has been found by Duffy

2The Bellcore dataset can be found at the Internet Traffic Archive: http://ita.ee.lbl.gov/
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Figure 1: Left : the throughput (bytes arrived per time slot) of the Bellcore BC-pAug89 trace, seen at

different scales. Burstiness is clearly maintained. Right : a Poisson process on the same scales. The process

is smoother on the coarser (higher) scales.

et al. [DMRW94] in the ITU-T SS#7 signalling system of telephone networks, which is actually a

packet-switched network. Paxson and Floyd [PF95] found fractal properties in wide-area network

traffic, specifically in TCP, FTP and Telnet connection arrivals. Crovella and Bestavros [CB97] de-

tected self-similarity in World Wide Web (WWW) traffic. Finally, peer-to-peer file sharing systems

such as Kazaa, Napster or eDonkey have recently been found to be much burstier than web traffic

and to be well modeled by self-similar processes [JLC04]3.

Mathematical models

The Bellcore paper shook the discipline of teletraffic modeling, giving birth to a whole new world of

alternative models based not on Markov chains and Poissonian processes but on a completely new

class of models that were added to an already long list of traffic theoretical representations. Several

mathematical models have been proposed for fractal traffic: Self-similarity, Long-range Dependence

(LRD) and Multifractal processes, among them. All these processes are usually linked with heavy-

3The presence of self-similarity and LRD in P2P networks is still a controversial topic and needs further and

deeper analysis. See for example [HMGBH06], where the authors state that P2P traffic is much smoother than

classical applications in the Internet.
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tailed distributions of some network-related parameters, such as file size or connection duration.

Although Chapter 1 describes these models in detail, we now give a short description of the most

usual forms of traffic’s fractal properties:

- A self-similar traffic process has a similar statistical distribution regardless of the time scales

at which is analyzed. In other words, the process is fractal and looks statistically the same at

all scales.

- A long-range dependent process exhibits a hyperbolically, slow-decaying autocorrelation func-

tion, while in the case of short-range dependent input the tail decays exponentially. The

presence of LRD means that the process is highly correlated and, therefore, the past evolu-

tion of the process has a strong influence in its future evolution.

- An LRD process exhibits a 1
fα -like power spectral density, where α is the scaling exponent

that characterizes the process. This is also known as the scaling or power-law property, since

it imposes a certain variance structure of the process across time scales.

- The queue length distribution of an infinite buffer system with LRD input traffic exhibits a

Weibull distribution. Therefore, the probability of finding the system in a state where the

queue is very long is higher than that found for the case of Poisson traffic, which builds an

exponentially distributed queue length.

- A multifractal process shows a highly variable short-time scale behavior, in which the fractal

parameters of self-similarity or LRD are not constant nor (in some cases) measurable.

- A general scaling process presents non-strict scaling behavior (for example, a process with two

or more scaling regimes4 in certain scale ranges), and can be understood as a generalization

of self-similar, LRD and multifractal processes.

A note about terminology

Though in the literature the terms self-similar, long-range dependent, and fractal are usually con-

sidered as equivalent, they are not (as we will see in Chapter 1. Besides there are multifractal

processes, that have also been found to be of interest when modeling network traffic.

For historical reasons, researchers usually use the terms self-similar or fractal traffic in a general

sense, referring to all the possible fractal characteristics of network traffic. Strictly speaking, the

word “fractality” refers to a single scaling exponent describing a strict scaling. However, the research

efforts carried out during the last years have shown that describing the statistical properties of the

traffic with a single exponent does not match reality, and that scaling parameters vary over time,

and even depend on the considered timescales. Hence, it seems that terms connected to statistical

self-similarity are more appropriate, since in some sense they are more general. Other authors have

used the term scaling as a generalization.
4i.e., power-laws with different shape parameters.



INTRODUCTION 11

Our work is, strictly speaking, focused on time-varying LRD processes, although most results

can also be applied to other process classes. That is why we will also use the terms self-similar

traffic and scaling traffic indistinctly throughout this thesis.

Implications for network performance

Scaling phenomena can be explained in terms of the well-known variability or burstiness of network

traffic, i.e., the fact that long packet bursts are followed by long periods of inactivity. The novelty

is that this happens on a wide range of time scales, while classical models can only capture the

burstiness on a certain natural scale of the system under study.

This has strong implications for network performance and results in an increase in buffer over-

flow probability of fractal-fed queues when compared to Markov-based models. Norros [Nor94]

contributed an outstanding study of the performance of a single server queue under monofractal

Fractional Brownian traffic, where it was shown analytically that self-similar traffic causes higher

buffer overflow probability and/or an increase in packet delay when compared to classical Poisson-

based modes, as shown in Figure 2. The subexponential distribution of the tail of the queue length

distribution in queues fed with fractal traffic has important implications for network resource plan-

ning, since the smoothing effect of buffers no longer works with self-similar traffic, unless we incur

prohibitive buffer sizes [ST99].

Figure 2: Mean queue size vs normalized offered traffic (utilization) for Poisson-based queue models M/M/1

and M/D/1, and FBM with H=0.7 and H=0.9 [Nor94]
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Wavelet-based techniques for estimation of the scaling prop-

erties of traffic

Several estimators of the degree of self-similarity of traffic can be found in the literature (such

as variance-time analysis, the rescaled adjusted range statistic (also known as R/S plot), the

periodogram-based method, and Whittle’s method [Mol04]). The recent (1998) application of wavelet-

based techniques to the analysis of traffic traces represented a significant step toward the develop-

ment of more accurate estimation procedures.

The Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) performs a subband decomposition of the signal spectrum

in which the subband bandwidth decreases dyadically with the frequency, giving rise to a multires-

olution analysis (MRA) in which the original signal is decomposed into a low-pass approximation

at scale J , ax(J, k) and a set of high-pass details dx(j, k) for each scale j = 1 . . . J , being k the

time variable. Each subband corresponds to a certain time scale, thus allowing the study of the

signal simultaneously at different time resolutions, also known as scales or octaves. This feature

is important for detecting the low frequency components of the signal, which are related to the

burstiness phenomenon.

The resulting transform is orthogonal and can be efficiently implemented using a bank of

quadrature-mirror low-pass and high-pass filters (h(n) and g(n), respectively) followed by a down-

sampling step [Mal89]. The downsampling step causes the number of DWT coefficients to be ap-

proximately halved at each stage. The procedure is iterated in the low pass subband as many times

as the desired number of scales. In the frequency domain, the DWT provides a decomposition in

subbands whose bandwidth are halved at each step. Figure 3 illustrates the algorithm and the

associated subband decomposition.

Figure 3: Left: the DWT as a filter bank (J=3). Right: the normalized frequency subband decomposition,

with the approximation a3 and details d1,...,3.
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Figure 4: LogScale Diagram of the bytes-per-slot time series from the Bellcore BC-pAug89 trace,

aggregated at 10 msec, analyzed with a db3 wavelet.

Estimation of scaling parameters with the DWT

The DWT-based fractal parameter estimator developed by Abry and Veitch, also known as LogScale

Diagram (LD) [VA99], is widely accepted as one of the best and most efficient estimators of scaling.

It performs a joint estimation of α (the scaling parameter, a qualitative measure of the phenomenon)

and cf (the second order parameter, a quantitative measure). The scaling parameter is usually

expressed in a rewritten form, the Hurst parameter H = (1 + α)/2.

The algorithm is based on the distribution of the process’ variance across scales, which is known

to follow a cf

|f |α -like power law for fractal processes. The LD estimates µj , the power of the signal

at each scale (subband) j, and represents its logarithm versus the scale index j, turning the power

law into a straight line with slope α and an offset related to cf . Both parameters can be estimated

by performing a weighted linear regression. Figure 4 illustrates the Logscale Diagram applied to the

Bellcore BC-pAug89 trace, with the characteristic variance alignment shown by scaling processes.

More details of the mathematics involved are given in Chapter 3.

Alternative wavelet transforms

The choice of the DWT provides a certain trade-off between frequency and time localization whose

main drawback is its lack of time resolution at the higher scales, where few wavelet coefficients

are available due to the downsampling step and where LRD and self-similarity is actually to be

detected, since those subbands correspond to the lower frequencies of the signal.

That is why other orthogonal and non-orthogonal wavelet transforms with different accuracy

trade-offs have also been considered as tools for the analysis of scaling processes. The redundant de-

scriptions, far from being useless, provide higher accuracy for parameter estimation and generation
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of synthetic traces. Redundant wavelet transforms pave the way for an enhanced time-frequency

characterization of network traffic.

Of the whole set of possibilities, we focused our attention on the following list:

• Wavelet Packet Transform (WPT). The WPT is derived from the DWT by iterating the

low-pass/high-pass filter decomposition not only in the approximation (or low-pass) branch

at each scale, but on the whole tree. This generates, for a given depth level, a set of possible

subband decompositions, being the DWT a particular case. This is a frequency-redundant

decomposition that we thought could open the way towards real-time detection of the changes

of the scaling parameters through an on-line automatic subband selection based on an on-line

best basis selection algorithm. This approach was studied but we abandoned it and focused

on a different family of techniques: those based on time-redundant representations.

• Maximal Overlap Discrete Wavelet Transform (MODWT), also known as Stationary

(SWT) or Shift-Invariant Wavelet Transform. The MODWT is derived from the DWT, by

the suppression of the downsampling stage at the output of the filters. Therefore, MODWT

is a time-redundant transform that produces at the output J+1 times the amount of samples

at the input, being J the number of scales at which the analysis is performed (J details +

approximation). This allows for a more accurate estimation of the variances at each scale,

and what is more, a better characterization of the evolution of the signal in the time domain.

The main drawback of the MODWT is the presence of correlation in the output of the higher

scales.

• Dual Tree (Complex) Wavelet Transform (DTWT). This transform can be interpreted

as a double DWT-style tree in which the original samples to be analyzed in one tree are the

odd positions, while the even-numbered samples are analyzed by the second tree. Its complex

nature comes from the interpretation of every couple of coefficients from both trees (a and b)

as the real and imaginary parts of a complex number a+ ib (i denotes imaginary unit). Given

that the filters of the trees meet some conditions, the DTWT can provide an almost shift-

invariant analysis with almost uncorrelated coefficients at the expense of a slight increase in

redundancy (two times the input samples) and complexity when compared with DWT. This

transform is a good trade-off between the DWT and the MODWT, keeping a good level of

time resolution and computational load, while maintaining redundancy and correlation at an

acceptable level for our purposes.

Our aim: detection of changes in the scaling parameters

Network traffic is expected to change its fractal parameters over time. An algorithm for segmenting

traffic into regions with homogeneous characteristics would be useful for the development of fractal-

aware network algorithms.
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The existing literature on fractal traffic modeling is dominated by fractal-stationary models,

in the sense of assuming constant values of α and cf for the whole time series analyzed. Fractal-

stationary models are not suited for real applications since measured traffic is expected to change

its behavior as time goes on. Few studies ([DLO+94, RVA98, RV99a, RV99b, VA01, AAI05] among

others) have explored the possibility of non-stationarity fractality or time-varying fractal parame-

ters.

Detecting the change points (i.e., the instants that bound segments showing a homogeneous

fractal behaviour) can thus be useful for some network mechanisms that exploit the long-range

dependence of network traffic. Some examples of these mechanisms are the TCP congestion control

presented in [HGHP02], a predictive bandwidth control for MPEG sources illustrated in [OY01], and

the effective bandwidth estimator for fractal sources described in [YTJ01]. All these mechanisms

rely on the estimation of the scaling parameters, and would benefit from the knowledge of a change

in the fractal parameters (though they differ on the time scale at which they work; the bandwidth

estimators react at the scale of seconds or tenths of second, while the TCP congestion control needs

feedback at the millisecond scale). The aim of this thesis is the development of algorithms that

are capable of tracking the evolution of the fractal characteristics of traffic and of signalling the

changes to the aforementioned fractal-aware mechanisms, in order to make them adapt to the new

situation.

Previous works

We now briefly mention some of the papers related to the study of the non-stationarity of the

scaling parameters of traffic. A comprehensive, more detailed description of the work done by other

authors can be found in Section 5.3.

There exists an on-line version of the Abry-Veitch estimator that performs a progressive (cu-

mulative) computation of subband variance and returns updated estimates using all available sam-

ples [RVA98] from the beginning of the measure. The same authors also studied the robustness of

the method when mean and variance shifts are present [RV99a]. Elsewhere, changes in the Hurst

parameter were analyzed for a LAN trace in a 1-hour or 4-hour window [RV99b]. A statistical test

of the constancy of the scaling parameter over constant-length windows has also been developed

and is able to detect changes in H but is insensitive to changes in the variance structure [VA01].

Furthermore, a wavelet-based study of TCP flow arrivals revealed nonstationarities, found no

strict scaling, and generalized the study to high-order scaling [Uhl04]. Finally, an accuracy-based

approach has been reported for the real-time estimation of multifractality, where the window length

is related to the confidence interval of the estimation [AAI05].

In another field of application, Whitcher [Whi98] has used the DWT, WPT and MODWT in

procedures for testing the homogeneity of variance across scales, with applications to the study of

the series of Nile river minimum water levels, ocean shear measurements, and the Madden-Julian

atmospherical oscillation.
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Figure 5: Scheme of our segmenting algorithm.

Our approach

We propose an algorithm capable of detecting the change points in which monofractal traffic changes

its behavior; i.e., its scaling parameter α or Hurst parameter H and cf . Our main idea follows: if the

scaling parameter and/or the second order parameter of traffic change at a given moment, so does

the complete variance structure at the whole range of scales. Therefore, if a change point detection

algorithm is applied at the output of the wavelet transform monitors the variance at every scale, a

change in α or/and cf can be detected as a simultaneous, time-aligned variance change across scales.

A final step of clustering and alignment of the changes provides the boundaries of the constant-

scaling segment. Figure 5 illustrates the three steps of our method. We have experimented with the

DWT, MODWT and DTWT transforms, together with the variance change point detection (VCD)

methods known as Iterated Cumulative Sum of Squares (ICSS) [IT94] and the Schwarz Information

Criterion (SIC) [CG97], and an alignment algorithm based on the Hough Transform [Rus99].

Network traffic shows a very complex behavior, mixing a highly non-stationary volume with

changes in its fractal properties. Besides, the definition of the scaling parameters are usually asymp-

totical. Finally, recent research results have identified variance change phenomena, usually triggered

by protocol dynamics, that take place at certain scales but not at the whole range of scales [JD05].

That is why we face a complex situation in which it is not easy to isolate each of the scaling-related

phenomena present in traffic. Our algorithms are able to track the changes of the variance structure

of network traffic, which can correspond to changes in the Hurst parameter, changes of variance,

or simultaneous changes of both parameters.

Our approach is more general than the constant window-based methods mentioned in the pre-

vious section, since we can localize the variance-transition points to any position and scale. In

addition, we can monitor the nonstationarities of the time series (both for the whole process and

scale-by-scale). This is important, since LRD estimators can be fooled by variance changes or shifts

in traffic volume [DLO+94, MD00].

To sum up, the aim of the present dissertation is to study the time evolution of fractal traffic

parameters via a wavelet-based analysis. The long-term goal of our research is a real-time charac-

terization of fractal traffic which, in turn, can lead the way to the development of new fractal-aware

network algorithms, exploiting the properties of self-similarity and long-range dependence.
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Our contributions

The main contributions of this dissertation are:

• A comprehensive description of the field of network traffic modeling, the presence of fractal

properties, and the previous works related to the study of the non-stationarity of the scaling

parameters of traffic [RSed, Rin05].

• The introduction of alternative wavelet transforms (WPT, MODWT, DTWT and DDDWT)

as possible tools for characterizing network traffic.

• The extension of the DWT-based LogScale Diagram to the WPT, as a first step towards an

on-line joint method composed of the WPT estimator and a fast best-basis splitting algorithm

capable of adapting itself to the time-frequency characteristics of the signal [RS02, RS04a,

RS04b, Min05].

• The development of joint wavelet - VCD methods for detecting the changes in the vari-

ance structure of scaling processes. DWT [RS05a, RS05b, RMSP05b], MODWT [RS05c,

RSdA05, Min05, RMS06] and DTWT [Rin05, ZR06, RZ06] have been combined with ICSS

and SIC, including a progressive (in the sense of near-real-time) version of the DWT algo-

rithm [RMCS04, RS05a, Min05, Per06].

• The development of an automatic clustering and alignment detection procedure based on the

Hough transform, as the final step of the joint wavelet-VCD algorithms [Min05, RMSP05b,

RMSP05a, RMS06].

• The performance evaluation of each of the proposed methods when applied to synthetic and

real traffic traces, including empirical powers of the change detection tests.

• The analysis and segmentation of real traffic traces (from the Bellcore dataset) and the con-

firmation of its nonstationary scaling behavior [RS04b, Min05, RMS06, Rin05].

Outline of the thesis

We now give a brief outline of the structure of this book. Chapter 1 serves as an introduction that

provides the necessary technical background on fractal traffic, including useful definitions for the

rest of the work. Furthermore, it gives an overview of the various research activities surrounding self-

similar traffic and outlines the principal issues in the areas of traffic and physical modeling, queuing

analysis and traffic control. Finally, it will present the results related to tracking the evolution of

the fractal parameters of traffic, and will emphasize the need for an algorithm capable of performing

such an analysis in real time.

Chapter 2 discusses the mathematical basics of the wavelet theory and its relation to scaling

phenomena in traffic series. Due to its ability to localize a given signal in both time and scale
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(or frequency), the wavelet transforms provide a powerful and refined technique for detecting and

quantifying scaling behavior (self-similarity, LRD, etc) in network traffic. On the other hand, the

aforementioned trade-off between time localization precision and redundancy will be described,

together with the alternative redundant wavelet transforms: WPT, MODWT and DTWT.

Chapter 3 illustrates the issues of detection and measurement of scaling behavior under the

hypothesis of stationary monofractality ; that is, of stationarity of the LRD and self-similar scal-

ing parameters across time. In order to achieve this purpose, the following wavelet-based static

estimators will be discussed:

- a DWT-based estimator (the Abry-Veitch estimator), built on a graphic tool called the

LogScale Diagram;

- an extension of the LogScale Diagram for the WPT.

This chapter contains the first of our contributions: the generalization of the LogScale Diagram for

the WPT. This opens the way for future developments of joint WPT-best basis algorithms, as was

our first intention. The WPT-based estimator, though, stands by itself.

Chapter 4 illustrates the issues of detection of variance changes in unidimensional time series.

This chapter begins with the statement of the variance change detection problem and follows

with the description of two algorithms proposed in the literature: the Iterated Cumulative Sum of

Squares (ICSS) and the Schwarz Information Criterion (SIC), formerly introduced in the contexts

of financial series and stock price analysis, respectively. The performance of both methods is studied

for both uncorrelated and correlated time series, in order to characterize their behavior.

Chapter 5 justifies the need for the study of the changes in the variance structure of the traffic

processes and its segmentation in regions with homogenous behavior, that in some cases can be

classified as locally stationary monofractal process. This chapter presents our time-segmenting al-

gorithm. The primary matter is naturally related to the joint use of wavelet transforms and change

points detection algorithms, as previously explained. The methodology used in the comparison of

the different methods is exposed here. The automatic alignment method based on the Hough trans-

form is also described and characterized. This chapter is the introduction to our main contribution:

the study of the performance of the joint algorithms, tested with synthetical and real traffic traces.

Chapters 6, 7 and 8 are dedicated to the description and evaluation of the three families of

methods we have developed, classified by their wavelet transforms: Chapter 6 describes the DWT-

ICSS and DWT-SIC methods (including its progressive version), while Chapters 7 and 8 focus on

the alternative wavelet-based methods: MODWT and DTWT-based algorithms, respectively. For

each of these transforms, a set of synthetic and real traces will be analyzed, including an empirical

statistical test of the power of the algorithms.

The dissertation ends with the conclusions, identification of open issues, and suggestions for

future work. Appendix A describes the Double Density Discrete Wavelet Transform (DDDWT),

another alternative wavelet transform with almost shift-invariant properties, whose use with the

variance change detection algorithms is one of the future lines of development of the present work.



Chapter 1

Scaling properties of network

traffic

1.1 Introduction

This chapter presents technical background on the scaling properties found in network traffic,

together with an overview of the various research activities surrounding the topic, such as the

development of the mathematical models, the origins of the scaling phenomenon, and its impact

in network performance. Special emphasis will be put on the challenge of tracking the evolution

of the variance structure and the scaling parameters of traffic. It is not our aim to provide an

in-depth, systematical description of all the theory related to the topic. For the interested reader,

we recommend the excellent tutorials provided by Park and Willinger [PW00], and by Hlavacs et

al. [HKS99]. A shortened version of this chapter has been accepted for publication in [RSed].

1.1.1 Renewal models

The classical models used in teletraffic modeling belong to the class of renewal processes. In a

renewal process, the observations X(t) are independent and identically distributed, though their

distribution is allowed to be general [HKS99]. The independency property means that the observa-

tions do not depend on the past, and therefore the autocorrelation function ρ(k) for all lags k 6= 0

are equal to zero.

Poisson processes

A Poisson process describes the arrival of observations (for example, telephone calls or data packets)

at certain instants in time.

19
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Definition 1.1. Given an exponentially distributed interarrival time random variable, with mean
1
λ , the number of arrivals within an interval of length T is described by the Poisson process:

Prob[k arrivals in T ] =
(λT )ke−λT

k!

Such a process has a mean arrival rate λ, measured in arrivals per time unit. Poisson processes

are considered memoryless, i.e., the number of arrivals occurring in any bounded interval of time

after time t is independent of the number of arrivals occurring before time t. The memorylessness

comes from the exponentially distributed nature of its interarrival time: the expected time of the

next arrival is independent of the time since the last observation. Therefore, the process has no

memory and the arrivals are considered as independent. The Poisson-based traffic models usually

assume an infinite population of independent customers.

Markov models

Markov models introduce some dependency in the observations. A Markov process with discrete

state space xn, n ∈ N is called a Markov chain, if the probability that the next observed value (or

state of the Markov chain) xn+1 = j depends only on the current state xn = i. The dependency is,

therefore, limited to one lag in discrete time. Therefore, the entire past history is summarized in

the current state of the process [Kle76].

There are variations of the simple model, such as the Markov-modulated Processes, in which an

auxiliary Markov chain is evolving in time, and its state controls the probability law of the model.

In Markov-modulated Poisson Processes (MMPP) the current state n of a superimposed Markov

chain defines the current arrival rate λn of the modulated Poisson process. The MMPP’s have been

used in traffic modeling in the recent past [HL86].

Application of renewal processes

Poisson and Markov-based arrival processes are very attractive due to their mathematical tractabil-

ity and their connection to the queueing theory. Besides that, such kinds of models make the chal-

lenges of traffic control a lot easier, due to a simple correlation structure that decays rapidly and

ensures that a bad event such as a packet burst will not affect the system excessively. When such

models are aggregated in time (as in a multiresolution analysis), the (residual) dependence is rapidly

lost and the nice properties of independent random variables apply.

1.1.2 Traffic traces and its aggregation

Traffic traces are composed of at least two columns: a timestamp (the time at which the packet

was captured) and packet size. Further information such as the port or the origin and destination

addresses can be useful for filtering different flows. In traffic studies, the series of interest are usually

the packet interarrival time (the difference between consecutive timestamps) and the instantaneous
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bit rate (the number of bytes that arrive during time slots of a constant length). In both cases, we

get a one-dimensional time series over which scaling estimation methods can be applied.

The aggregation or rescaling of the packet arrival process plays an important role in performance

analysis and control. As stated in [PW00], “(...) buffering and, to some extent, bandwidth provi-

sioning can be viewed as operating on the rescaled process”. Traffic traces are, therefore, studied on

different time scales through aggregation.

Definition 1.2. Given a continuous-time stochastic process X(t) defined in t >= 0, we define its

discrete-time aggregated version Xm(k), k >= 0 at aggregation level m as the average of X(t) in

non-overlapping blocks of size m:

X(m)(k) =
1
m

(k+1)m∑
t=km

X(t) k = 0, 1, 2 . . .

As the aggregation level increases, and given that the original signal has finite length (which is the

case of real traffic traces), the amount of samples of the rescaled process decreases by a factor m.

1.1.3 An intuitive definition of self-similarity

Self-similarity (or fractality) describes the scale-invariance (in space or time) of an object, for

example an image or a time series. When part of a fractal is magnified, a similar object is obtained.

The 1D Cantor set depicted in Figure 1.1 (left) is an example of a fractal object. This set,

defined in the [0, 1] support, can be obtained by equally dividing a segment of length 1 in three

parts, scaling its size by 1/3, placing two copies of this scaled segment at the two edges of the

support and then applying recursively the same process of scaling and translation ad infinitum. An

alternative version of the 1D Cantor set can be obtained by relaxing the condition of equality of

the mass distribution among segments, as long as the total mass is preserved at each stage of the

construction. Figure 1.1 (middle) shows such a construction with weights αL = 2/3, αR = 1/3 for

the left and right components, respectively.

In our context, we can interpret the result of both versions of the Cantor set as traffic intensity

in a communications network. In the first case we obtain an on/off source that can model the

transmission of constant-length packets (for example, ATM cells, 53 bytes long). In the second case

we can interpret the values obtained as the amount of packets or bytes arrived per time slot. In

both cases the obtained random variable is, by construction, exactly self-similar.

Consider a discrete-time stochastic process X(k), k ∈ Z, that can be interpreted as the traffic

volume measured in bytes at time slot k of length m, following the intuition established with

the Cantor set example. The total traffic volume up to time t (from time 0) is also of interest.

Let’s consider the corresponding cumulative process Y (t), whose differences (also called increment

process) constitute the original X(t) Cantor process. In our case, let us assume that time is discrete

and, therefore, we can equivalently index the time steps by t = 0, 1, 2, . . . and define the cumulative
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Figure 1.1: Left : 1D Cantor set interpreted as on/off traffic. Middle: One-dimensional nonuniform Cantor

set with weights αL = 2/3, αR = 1/3. Right : Cumulative process corresponding to the 1D on/off Cantor

traffic depicted on the left. Reproduced from [Min05].

process Y (t) as:

Y (t) =
t∑

k=0

X(j), t = 1, 2, . . . (1.1)

and equivalently,

X(t) = Y (t)− Y (t− 1), t = 1, 2, . . . (1.2)

The result is shown in Figure 1.1 (right). Now Y (t) represents the total traffic volume up to time

t, whereas X(t) represents the traffic intensity during the ith interval.

A further generalization can be achieved by abandoning the constraint of the deterministic

distribution rule and substituting it with a stochastic rule in which a random variable decides the

amount of mass to be assigned to each segment. This is more useful for modeling purposes, since

teletraffic possesses an intrinsic stochastic variability component. Of course, the concept of fractality

is somehow lost, since the shape of the process cannot be exactly the same, but its statistical

distribution can. That is why teletraffic studies implicitly assume stochastic self-similarity of the

input process. This is the case of the Bellcore trace BC-pAug89, shown in Figure 1.2 at different

scales.

1.2 Mathematical models

This section provides a brief introduction to the necessary mathematical background about scaling

processes. For a more exhaustive discussion regarding these concepts, see [Ber94] and [PW00].

1.2.1 Second-order self-similarity

In teletraffic, time series coming from traffic traces are implicitly considered stationary. For this

reason we would like X(t) (the traffic intensity or instantaneous bitrate) to be stationary in the
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Figure 1.2: Throughput (bytes arrived per time slot) of the Bellcore BC-pAug89 trace, at the 10 ms, 100

ms, 1 second and 10 seconds scales.

sense that its behavior or structure is invariant with respect to time shifts. What follows is a more

formal definition of this concept.

Definition 1.3. The process X(t) is strictly stationary if the original and the shifted processes are

statistically equivalent, regarding its finite-dimensional distributions:

X(t) =d X(t+ k) ∀ t, k ∈ Z

or, equivalently, if [X(t1), X(t2), . . . , X(tn)] and [X(t1 + k), X(t2 + k), . . . , X(tn + k)] possess the

same joint distribution for all n ∈ N+, t1, . . . , tn, k ∈ Z.

Real traffic traces are not strictly stationary. Therefore, we have to define a weaker, more tolerant

concept of stationarity, the second-order stationarity.

Definition 1.4. A process X(t) is said to be second-order stationary if its mean µ(t), variance

σ2(t) and autocovariance γ(t, s) (this is, its first and second-order statistics) satisfy:

µ(t) = E{X(t)} = µ ∀ t ∈ Z

σ2(t) = E{[X(t)− µ]2} = σ2 ∀ t ∈ Z

γ(t, s) = E{[X(t)− µ][X(s)− µ]} = γ(t+ k, s+ k) ∀ t, s, k ∈ Z

In the previous definition the first two moments of the process are assumed to exist and be

finite. From now on, we will assume µ = 0. Due to the stationarity property γ(t, s) = γ(t − s, 0)

and since time-shifts do not really affect the results, from now on we can denote the autocovariance

function as γ(k).

Under the assumption of second-order stationarity, we can derive the following definitions.
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Figure 1.3: Autocovariance function of an exactly second-order self-similar process for different values of

the Hurst parameter. Top to bottom: H = 0.5, H = 0.7, H = 0.9. Reproduced from [Min05].

Definition 1.5. X(t) is exactly second-order self-similar with Hurst parameter H, 1/2 < H < 1,

if its autocovariance function is given by the following expression:

γ(k) =
σ2

2
[(k + 1)2H − 2k2H + (k − 1)2H ] ∀ k ≥ 1 (1.3)

Definition 1.6. Let γ(m)(k) denote the autocovariance function of X(m)(i); then X(t) is asymp-

totically second-order self-similar with Hurst parameter H, 1/2 < H < 1, if

lim
m→∞

γ(m)(k) = γ(k) =
σ2

2
[(k + 1)2H − 2k2H + (k − 1)2H ] ∀ k ≥ 1 (1.4)

Equation (1.3) implies γ(k) = γ(m)(k) for all m ≥ 1. Therefore, second-order self-similarity

captures the property that the correlation structure is exactly (as shown in Equation (1.3)) or

asymptotically (as shown in Equation (1.4)) preserved under time aggregation.

A plot of the γ(k) function for different values of the Hurst parameter is given in Figure 1.3.

From the figure it is clear that the correlation of the samples extracted from the process increases

with the Hurst parameter. In particular, H = 0.5 corresponds to uncorrelated samples. The link

between this correlation structure and the nature of self-similar traffic is often expressed in literature

(for example, in [LTWW94]) by the following proposition.

Proposition 1.1. The Hurst parameter is a measure of the burstiness of the traffic series X(t):

the higher the H, the higher the number of scales across which the burstiness is kept.

1.2.2 Distributional self-similarity

In order to understand the expression for γ(k) in the previous definition of second-order self-

similarity, let’s take a second look to self-similar processes.
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Consider the cumulative, continuous-time process Y (t), t ∈ R. A definition of self-similarity (in

the sense of finite-dimensional distributions) for continuous-time processes follows:

Definition 1.7. Y (t) is self-similar with Hurst parameter H, 0 < H < 1, denoted as H-SS, if

Y (t) =d a−HY (at) ∀ a > 0, t ≥ 0 (1.5)

where =d means equally distributed. The definition states that Y (t) and its time scaled version

Y (at) normalized by a−H follow the same distribution. Observe that, unless degenerated (Y (t) = 0

for all t ∈ R), the process Y (t) cannot be stationary. Its increment process X(t), however, can

be stationary. Recall that in our context Y (t) is the cumulated traffic process, and X(t) is the

instantaneous traffic. We can define X(t) as self-similar with stationary increments and denote it

by H-SSSI, if it verifies the following definition:

Definition 1.8. Y (t) is said to be H-SSSI if it is H-SS and its increment process X(t) = Y (t) −
Y (t− 1) is stationary.

Which is the connection between continuous-time distributional self-similarity and discrete-time

second-order self-similarity? Recall that the latter requires exact or asymptotic invariance with

respect to second-order statistical structure of the aggregated time series X(m). The answer follows:

Proposition 1.2. If Y (t) is a H-SSSI process, then its increment process X(t) satisfies

X(k) =d m1−HX(m)(k) ∀ k ∈ Z∗ (1.6)

Proof. Noting that X(m) can be viewed as a sample mean, we have

X(m)(k) =
1
m

(k+1)m∑
t=km

X(t) =
1
m

[Y ((k + 1)m)− Y (km)]

=d 1
m
mH [Y (k + 1)− Y (k)] = mH−1X(k)

⇒ X(m)(k) =d mH−1X(k)

Since X(m)(k) =d mH−1X(k), then X(k) =d m1−HX(m)(k)

Equation (1.6) shows howX(m)(k) is related toX(k) via a simple scaling relationship involving H

in the sense of finite-dimensional distributions. Therefore, Equations (1.3) and (1.4) express the fact

that X(k) and m1−HX(m)(k) are required to have exactly or asymptotically the same second-order

structure. As a result, depending on whether a discrete time process X(k) satisfies Equation (1.6)

for all m ≥ 0 or only as m→∞, the process X(k) is said to be exactly self-similar or asymptotically

self-similar. In the Gaussian case this definition coincides with second-order self-similarity.

1.2.3 Long-range dependence (LRD)

In the previous pages we have focused on self-similarity in the second-order stationary and distri-

butional senses, and paid little attention to the Hurst parameter H and its range of values. In order
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to fill this gap, we have to go back to the definition of second-order self-similarity of a process X(t)

and to its autocovariance function γ(k).

For 0 < H < 1, H 6= 1/2, it holds [Ber94]:

γ(k) ∼ σ2 H(2H − 1)k2H−2, k →∞ (1.7)

In particular, if 1/2 < H < 1, with the settings

cγ = σ2 H(2H − 1), cγ > 0 (1.8)

α = 2H − 1, 0 < α < 1 (1.9)

the asymptotical behaviour of γ(k) can be written as

γ(k) ∼ cγ k
−(1−α), k →∞ (1.10)

Therefore, the autocovariance function decays hyperbolically, slower than a negative exponential.

Such a function is not summable:
+∞∑

k=−∞

γ(k) = ∞

and we can state the following definition.

Definition 1.9. A stationary process X(t) is said to be long-range dependent (LRD) if its autoco-

variance function is not summable; otherwise, we call it short-range dependent (SRD).

An equivalent definition can be given in the frequency domain, studying the power spectral

density (PSD) of X(t). The PSD is defined as the Fourier transform of the autocorrelation function,

which in our case coincides with the autocovariance function since we assumed µ = 0):

S(f) =
+∞∑

k=−∞

γ(k) e−j2πkf (1.11)

The long-range dependence property then becomes:

S(f) ∼ cf |f |−α, f → 0 (1.12)

where S(f) satisfies, in the case of discrete-time processes

γ(0) = σ2 =
∫ 1/2

−1/2

S(f)df (1.13)

As stated, S(f) diverges around the origin, implying large contributions by low-frequency compo-

nents of the process X(t). This is shown in Figure 1.4 for different values of the Hurst parameter.

Each of the two definitions of long-range dependence includes two parameters: (α, cγ) and (α, cf ),

respectively. These are equivalent as [Ber94]:

cf = 2(2π)−α cγΓ(α) sin
(1− α)π

2
(1.14)
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Figure 1.4: Power spectral density of a LRD process for different values of the Hurst parameter. Top to

bottom: H = 0.7, H = 0.8, H = 0.9. Reproduced from [Min05].

where Γ is the Euler function. In each pair, α is the dimensionless scaling parameter : it is the

most important, as it defines the existence of the phenomenon itself and describes the qualitative

nature of scaling. Consequently, the emphasis has traditionally been on the estimation of α or,

equivalently, of the Hurst parameter, related to α by Equation (1.9). The second parameter, cγ or

cf , is an independent, quantitative parameter with dimensions of variance which has received far

less attention, and the importance of its estimation has been largely neglected. This is unfortunate,

because in applications the second parameter plays a major role in fixing the absolute size of LRD-

generated effects, the general character of which is determined by α. The importance of cf has been

highlighted in [VA99], leading to a joint estimator (α̂, ĉf ). We will discuss it again in Chapter 3.

We conclude this paragraph by pointing out the impact of the H value on the autocovariance

function γ(k):

- if H = 1/2, then γ(k) = δ(k), and X(t) is completely SRD, that is, its samples are completely

uncorrelated;

- if 0 < H < 1/2, we have
∑+∞

k=−∞ γ(k) = 0, a condition rarely found in practical applications;

- H = 1 is uninteresting, since it leads to the degenerate situation γ(k) = 1 for all k;

- finally, values H > 1 are prohibited, due to the stationary condition on X(t).

1.2.4 Self-similarity versus long-range dependence

From the previous discussion one can conclude that there are self-similar processes whose increment

processes are not long-range dependent, and vice-versa. For example, Brownian motion is 1/2-SSSI
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with white Gaussian noise as its increment process, but the latter is not long-range dependent. Our

analysis, however, will not need this distinction: the reason can be found in the following proposition

(proof will be omitted).

Proposition 1.3. In the case of asymptotic second-order self-similarity and by the restriction

1/2 < H < 1, self-similarity implies long-range dependence, and vice-versa.

For this reason and for the fact that asymptotic second-order self-similar processes are em-

ployed as canonical traffic models, that the authors use self-similarity and long-range dependence

interchangeably. Besides, the expression scaling traffic is also found in the literature.

1.2.5 Heavy tails

Heavy tails are intimately related with LRD and self-similarity. Heavy tails have been found in

network-related variables (HTTP or FTP file sizes, TCP and HTTP connection durations) and

have been identified as being responsible for the associated traffic’s long-range dependence.

Definition 1.10. The distribution of a random variable X is said to be heavy-tailed if its tail decays

hyperbolically:

Prob(X > x) ∼ cx−α, x→∞ (1.15)

where c is a positive constant and 0 < α < 2 is the tail index or shape parameter.

Heavy-tailed distributions have infinite variance and can have infinite mean if 0 < α < 1, though

the latter case is not of much use in the teletraffic modeling field.

The Pareto distribution is probably the best example of a heavy-tailed distribution, and is

frequently used in teletraffic research:

Prob(X ≤ x) = 1−
( b
x

)α

, b ≤ x (1.16)

where 0 < α < 2 is the shape parameter and b is the location parameter. The mean of the Pareto

distribution is given by

E[X] =
αb

α− 1
(1.17)

and its variance in infinite. There are other distributions, such as Weibull and log-normal, that

although having subexponential tails, possess finite variance. Exponential and Gaussian distributions

are light-tailed distributions.

Why do heavy tails play such a prominent role in scaling traffic research? Heavy tails are present

in extremely variable random variables, with nonnegligible probabilities of generating large values.

If these variables are used for modeling packet interarrival times or instantaneous bitrate series,

we get the behavior found in computer networks regarding the burstiness of traffic: large sizes of

packet bursts do appear frequently, followed by long periods of inactivity (silence).
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Figure 1.5: Two sample paths of FBM processes. Left : H=0.5, reducing to standard Brownian Motion.

Right : H=0.9, with a clear non-stationary trend.

1.2.6 Fractional Brownian Motion (FBM) and Fractional Gaussian Noise

(FGN)

We introduce now two processes that will be especially useful as traffic models in our simulations:

Fractional Brownian Motion (FBM) and its increment process, Fractional Gaussian Noise (FGN).

These are Gaussian, self-similar processes with long-range dependence [MN68]. Due to its Gaussian-

ity, they are especially useful as aggregate traffic models, since (under certain regularity conditions)

the aggregation of independent and identically distributed traffic sources leads to Gaussian distri-

bution by the central limit theorem.

Definition 1.11. Y (t), t ∈ R, is called Fractional Brownian Motion (FBM) with Hurst parameter

H, 0 < H < 1, if it is Gaussian and H-SSSI.

Fractional Brownian Motion was defined by Mandelbrot and Van Ness [MN68] as:

BH(t) =
1

Γ(H + 1
2 )

∫ 0

−∞
[(t− s)H− 1

2 − (−s)H− 1
2 ]dW (s) +

∫ t

0

(t− s)H− 1
2 dW (s) (1.18)

where W(s) denotes a Wiener process defined on (−∞,+∞) [PV95].

The main properties of FBM are [KGD03, HKS99]:

- BH(0) = 0.

- BH(t) has independent increments.

- E[BH(t)−BH(s)] = 0.

- BH(t+ T )−BH(t) is normally distributed, N(0, σ|δ|H).

- E[(BH(t+ T )−BH(t))2] = VHT
2H , where VH is a constant.

- E[BH(t)BH(s)] = σ2

2 (|t|2H + |s|2H − |t− s|2H)
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In [Nor94], FBM is used to characterize the number of packet arrivals in the interval (0,t),

Nt = mt+
√
amZt, where m denotes the mean of the process, a is the coefficient of variation, and

Zt is the normalized FBM with Hurst parameter H.

Figure 1.5 illustrates the behavior of two sample paths of FBM with different values of H, where

it can be seen that H modulates the roughness of the time series.

Definition 1.12. X(t), t ∈ Z, is called Fractional Gaussian Noise (FGN) with Hurst parameter H

if it is the increment process of a FBM process with parameter H.

The main properties of a FGN process GH(t) are [HKS99]:

- GH(t) = 1
δ (BH(t+ δ)−BH(t)).

- GH(t) is normally distributed, N(0, σ|δ|H−1.

- E[GH(t+ τ)GH(t)] = σ2H(2H − 1)|τ |2H−2) , τ � δ.

Besides, discrete time FGN has the following autocorrelation function:

ρX(k) =
1
2
(|k + 1|2H − 2|k|2H + |k − 1|2H), k ≥ 1. (1.19)

which is not summable and denotes LRD.

The values of the scaling parameter α of the FGN LRD process and the Hurst parameter H of

the associated FBM self-similar process are related by equation 1.9. That is why researchers usually

mention the “H parameter of LRD traffic”, though it is not strictly correct, as the rewritten version

of α.

By the definition of H-SSSI, when H = 1/2:

- FBM reduces to Brownian motion;

- FGN reduces to white Gaussian noise.

Since Gaussian processes are characterized by their second-order structure, for each H, 0 < H < 1,

there is a unique Gaussian process that is the stationary increment of a H-SSSI process. For the

same reason, for Gaussian processes, distributional self-similarity and second-order self-similarity

yield equivalent definitions. Figure 1.6 shows two examples of FGN processes.

1.2.7 Multifractals

LRD and self-similar processes fall into the class of monofractal processes; this is, its scaling ex-

ponent α or Hurst parameter H remains constant with time. If this constraint is relaxed, we get

multifractal processes, whose Hurst parameter can change with time.

Of particular interest is the Multifractional Brownian Motion (mFBM), defined as [PV95]:

BHt
(t) =

1
Γ(Ht + 1

2 )

∫ 0

−∞
[(t− s)Ht− 1

2 − (−s)Ht− 1
2 ]dB(s) +

∫ t

0

(t− s)Ht− 1
2 dB(s) (1.20)
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Figure 1.6: Two sample paths of FGN processes generated with a mean value of 1024 and variance 1. Left :

FGN with H=0.5: short-range dependent, resembling white noise. Right : FGN with H=0.9: long-range

dependent, with remarkable low-frequency components.

Figure 1.7: Example of mFGN trace composed by three FGN segments with mean 1024, variance 1 and

different values of the Hurst parameter: H = 0.8, H = 0.9 and H = 0.7.

where B(s) is the ordinary Brownian motion process and the integration is taken in the mean

square sense. The Hurst parameter of such a process, Ht = H(t) is a function of time and can

be estimated1. In our work we have used synthetic FGN traces with piecewise constant Hurst

parameter, such as the one shown in Figure 1.7. We can consider these signals as Multifractional

Gaussian Noise (mFGN), the increment process of mFBM.

In general, multifractals are not as easy to define as the particular case of mFBM and mFGN.

Multifractals focus on the local scaling behavior of the process, and can be characterized by the

Hölder exponent α(t), defined later in Equation 1.212. Unfortunately, the Hölder exponent is dif-

ficult to work with, and usually one can only determine its multifractal spectrum f(α); that is, its

distribution.

An alternative definition can be obtained by considering that the local strength of singularity
1In this case, H(t) is usually called a Hölder function.
2Note that this parameter does not necessarily coincide with an LRD time-dependent scaling parameter.
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of a function X(t) is characterized by the Hölder exponent. Then, the real number α(t) given by

the following expression [KGD03]:

α(t) = sup{β ≥ 0 : |X(t, t+ δt)−X(t)| = O(|δt|β) as δt→ 0} (1.21)

is called the Hölder exponent of X(t) at t. This local scaling behavior can be interpreted as the

instantaneous traffic rate, i.e., the number of bytes or packets which have arrived in the interval

[t, t+ δ], as δt→ 0. In this case,

|X(t, t+ δt)−X(t)| ∼ |δt|α(t) (1.22)

where α(t) is the order of the polynomial that approximates |X(t, t+ δt)−X(t)| as |δt| → 0.

The value of the Hölder exponent α(t) of a process can be interpreted as follows: the intervals

where α(t) < 1 correspond to bursts of the process, while those where α(t) > 1 show low intensity

fluctuations.

The rest of the multifractal formalism will not be presented in detail here, since it is out of

the scope of our work. More details can be found in [KGD03, RCRB99]. One multifractal process,

the Multiplicative Generated Multifractal (also known as cascades), breaks a given set into smaller

pieces according to a geometric or random rule [RW00, GWF99]. This process has been proposed as

a traffic model because it mimics the fragmentation performed by the protocol stack: each trace is

composed of sessions, each session consists of object requests, each request triggers TCP connections,

each TCP connection is fragmented in IP packets, and finally IP packets are transported (and

possibly further fragmented) by Layer 2 protocols.

1.3 Topics related to scaling traffic

This section discusses briefly several aspects of the scaling properties of traffic, such as its origins,

the implications for network performance, and a short discussion of the proposed models.

1.3.1 The origins of traffic scaling

The teletraffic research community has long since advocated for physically understandable models;

that is, models which not just provide a mathematical description but also try to explain what is

happening in the network and what are the physical causes of self-similarity. Three main scenarios

have been identified, depending whether the causes are the behavior of users (or the intrinsically

fractal traffic sources), the heavy-tailedness of certain network-related variables, or the dynamics

of network protocols.

Users and traffic sources

Users can generate fractal usage patterns that, when replicated in the session characteristics and in

the packet generation, can induce scaling properties at the packet level. The same happens when
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a traffic source is intrinsically fractal, such as VBR video; in this case, we have what Park and

Willinger call single source causality [PW00]. Some of the most relevant works whose results belong

to this category are:

- FTP and Telnet: It has been shown that wide-area TCP traffic packet interarrivals are

not always exponentially distributed [PF95]. This study explored the characteristics of user-

initiated TCP session arrivals of several network services. Remote-login and file transfer ses-

sion arrivals are the only ones that are well modeled by Poisson processes (with time-dependent

arrival rates), while the rest of services exhibit severe deviations from the exponential case:

Telnet arrivals are much burstier than the exponential model and preserves burstiness across

scales; and FTP data connections within FTP data sessions come in connection bursts, the

largest of them being the dominant of the whole FTP traffic.

- HTTP, World Wide Web: Web users seem to follow heavy-tailed usage patterns [CB97];

actually, the way a WWW user behaves is intrinsically bursty at various scales, due to the

transitions between page download and inactivity (reading time), that translate into connec-

tions and packet bursts that inherit fractality.

- Variable Bit Rate (VBR) video: MPEG video, for example, exhibits variability at multiple

time scales related to the variability found in the time duration between successive scene

changes [BSTW95]. The authors of [GW94] hypothesize that digital compressed TV and

cinema possess an intrinsical scaling property due to the distribution of the scene durations.

- Peer-to-peer (P2P) file sharing: peer-to-peer file sharing systems (such as Kazaa, Napster

or eDonkey) have recently been found to be much burstier than web traffic and to be well

modeled by self-similar processes. In [JLC04] the authors study the P2P traffic generated by

the residential users of an ADSL access operator, and quantify the scaling properties, finding

that the Hurst parameter of P2P is above 0.9, while WWW traffic is only slightly under

that number; and propose FGN and the aggregation of Pareto-distributed on/off sources as

models. Another study [Mar02] shows that the Gnutella file sharing system exhibits high

burstiness across scales. For small intervals ranging from one to ten seconds, the traffic is very

bursty and varies in 2 and even 3 orders of magnitude, and in one and five minute intervals

burstiness is maintained, though not as intensively. In both studies, the scaling properties of

traffic seem to be linked with the behavior of individual users, that can be modeled as on/off

Pareto sources.

Heavy-tails

The second cause of fractality, also called structural causality by Park et al. [PKC96a], is related

to an empirical property inherent in distributed systems: the heavy-tailedness of files stored in disk

systems. Heavy-tailed distributions have been reported in UNIX disk systems [PKC96a] and in

web objects [CB97], among others. The transfer of these objects through networks generates heavy-

tailed bursts and connections, and its multiplexing at the network core generates self-similarity. The
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latter is one of the fundamental results of modern traffic modeling, and was shown by Willinger

et al. [WTSW97], who proved that the superposition of a large number of independent on/off

sources with heavy-tailed on or off periods leads to self-similarity and long-range dependence in

the aggregated process. We remark that this model is able to induce both Fractional Gaussian

Noise (see Section 1.2.6), as a result of the central limit theorem, and a form of self-similarity

called asymptotic second-order self-similarity (see Section 1.2.1), which constitute two of the most

commonly used self-similar traffic models in performance analysis.

The connection between higher-layer (source heavy-tailedness) and lower-layer descriptions of

scaling resides in the fact that the application-layer property of heavy-tailed file sizes is preserved

by the protocol stack and mapped to approximate heavy-tailed busy periods at the network layer.

This phenomenon was shown to hold true for a variety of transport layer protocols, such as TCP

in its different flavors (Tahoe, Reno and Vegas, to mention some of them) [PKC96a].

Protocols

Finally, protocol dynamics have been identified as sources or propitiators of fractality. Peha [Peh97b,

Peh97a] pioneered the study of the influence of protocols in the statistical characteristics of traffic;

i.e., protocols shape traffic and can induce scaling behavior in it.

Network traffic shows long bursts of packets followed by long silences, and this property is found

at several time scales (packets can be aggregated in bursts, bursts in connections, connections

in user sessions). The fragmentation induced by the protocol stack may be the cause of traffic

multifractality, due to its similitude to cascades and multiplicative processes. The congestion control

algorithms implemented in TCP also seem to affect the short time structure of traffic and induce

multifractality [FGHW99] or at least some degree of scaling [JD05].

1.3.2 Implications for network performance

Queueing analysis

The analysis of queuing behavior with long-range dependent input exhibits a completely differ-

ent behavior from corresponding systems with Markovian input. In particular, the queue length

distribution of an infinite buffer system with scaling traffic decays much more slowly than the

exponential, which is the rate at which it decreases with short-range dependent input, as shown

by Norros [Nor94] (see Figure 2 in the Introduction). LRD input can give rise to Weibullian or

polynomial tail behavior of the queue length distribution. In these cases, the long-used resource

provisioning rule of increasing buffer length incurs a disproportionate penalty in queuing delay.

Some authors advocate the truncating effect of finite (and short) buffers [HL96] that destroy

the memory of the process and therefore its long-range dependence; but this is only possible if we

assume a certain degree of losses, and may not work if retransmission mechanisms such as those of
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TCP repeat the lost packets, incurring in higher delays. Other studies propose a simple resource

provisioning approach based on the combination of small buffers and large bandwidth [PM96].

One of the major weaknesses of the queuing analysis results available is that they are asymptotic

in the sense of buffer capacity: either the queue is assumed to be infinite and asymptotic bounds

of the tail of the queue length distribution are derived, or the queue is assumed to be finite but its

overflow probability is computed for the buffer capacity approaching infinity. Few empirical studies

have tried to bridge the gap between asymptotic analysis and real testbeds. A further drawback is

that most queuing results obtained for long-range dependent input are for open-loop systems that

ignore feedback control issues presented in actual networking environments (e.g., TCP). Feedback

can influence and shape notably the traffic that arrives at the queue, and TCP has been identified

as a strong traffic shaper [JD05].

Regarding multifractal traffic, Dang et al. [DMM03] provided analytical results for the case of a

single server infinite capacity queue with a constant service rate that are coherent with those found

by Norros for monofractal traffic. The authors concluded that multifractal processes behave even

worse (in the sense of queue length) than monofractal input processes.

Resource provisioning

The works on queuing analysis with self-similar inputs have a direct bearing on the resource di-

mensioning problem. The statistical characterization of the multiplexing of self-similar flows is an

important question, since it can open the way to a new set of rules of thumb for network operators.

The questions answered with the help of these techniques are:

- quantitatively estimating the marginal utility of a unit of additional resource such as band-

width or buffer capacity;

- pointing towards how resources can be utilized efficiently when shared across multiple flows

(statistical multiplexing).

Several contributions in the scientific literature have attacked this question, but we will provide

only some pointers. Gibbens [Gib96] provided an excellent overview of the topic and redefined

the concept of effective bandwidth in the scaling context. Fan and Georganas [FG95] proved that

when two comparable flows with different Hurst parameters are merged, the one with the higher

H dominates the mix, though the effect is modulated depending on the traffic volume balance.

Finally, open-loop resource provisioning relies strongly on the queueing analysis results, which

state the uselessness of the strategy of allocating a buffer capacity proportional to bandwidth, and

the strong influence of correlation when finite buffer capacity is provisioned [GB99].

Dimensioning

Regarding systems with feedback, also known as closed-loop control, some work has been done in

the field of multiple time scale congestion control, exploiting the correlation structure that exists
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across multiple time scales in self-similar traffic for congestion control purposes. Though the scaling

properties of traffic impact negatively the performance, a positive aspect is that long-range depen-

dence and its inherent predictability paves the way for utilizing correlation at large time scales

for guiding congestion control actions. The problem of designing such a control mechanism is a

nontrivial technical challenge for two reasons:

- the correlation structure in question exists at time scales typically in an order of magnitude

above that of the feedback loop;

- the information extracted is necessarily imprecise, due to its probabilistic nature.

Some contributions have explored these topics. Papagiannaki et al. [PTZD05] successfully ap-

plied LRD properties in order to predict the long-term evolution of Internet backbone traffic mea-

sured in an operator. Other works have focused on connection duration prediction, where it has

been found that the duration of flows, sessions or connections follow heavy-tailed distributions.

Actually, most connections are short-lived but the bulk of traffic is contributed by few long-lived

flows [PKC96a]. This heavy tailedness implies predictability : a connection whose measured time

duration exceeds a certain threshold is more likely to persist in the future.

1.3.3 Discussion on the models

Though it is clear that Poisson-based models fail to incorporate the intrinsic burstiness of traffic

sources at several scales, it is still under discussion whether (and which of) the models proposed in

the literature provide a good characterization of the complex processes found in real traces.

This is an ill-posed problem, since Internet traffic is evolving constantly, not only in volume but

also in structure; the kind of applications used in the first years of the 1990s, when self-similarity

was first described, had nothing to do with the predominant position of web traffic seen later, and

in the 2000s it seems that peer-to-peer and file sharing applications are responsible for the biggest

share of bytes transferred. What is more, Internet infrastructure is growing constantly due to the

demand from existing and new users, which makes it even more difficult to compare past results

and new traces.

Just to give an overview of the latest tendencies in traffic modeling, we will comment on some

of the newest contributions, in which it seems that network researchers are advocating for simpler,

more physical-rooted models. It has recently been shown by Karagiannis et al. [KMFB04] that

modern aggregated wide-area traffic can be well modeled by Poisson processes at sub-second scales,

while piecewise-linear non-stationarity and long-range dependence seem to fit well at higher scales.

Veitch et al. [VHA05] consider that the physical evidence for multifractality in TCP traffic is

weak, and provide a case against multifractality in which multifractal behavior can be seen as “a

misinterpretation due to a lack of power in statistical methodology”. Another interesting topic is

the multiple scaling regimes found in some traces; in these cases, different scaling parameters can

be identified for certain scale ranges. For example, Jiang and Dovrolis [JD05] recently found that
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some TCP mechanisms can induce scaling, but only in a certain time scale range, usually under the

round-trip time (RTT). Finally, there is a growing interest in the paper of non-stationarity in the

statistical properties of traffic. Uhlig [Uhl04] studied the high-order scaling in TCP flow arrivals by

performing non-stationarity checks and using the wavelet transform.

The scaling paradigm is firmly established as the foundation of modern teletraffic modeling,

though it is still unclear which specific model is the most appropriate. Given the complexity of

Internet traffic, probably no model –either known or yet to be devised– will ever be found to be

definitive. However, more research is needed on this topic. Clearly there are important network per-

formance issues, and protocols and algorithms should be aware of the scaling properties of traffic.

Some steps have been taken in this direction, with the development of a fractal-aware version of

TCP congestion control [HGHP02], the effective bandwidth estimators for LRD traffic described

in [YTJ01] and [ST01] and the novel resource-control algorithm for IP over WDM networks de-

scribed in [EC05]. A promising field for research is the development of estimation algorithms that

can adapt to the non-stationarity of traffic, which is a challenging task.

1.4 Summary of the chapter

Several studies have proven that network traffic exhibits scaling properties that cannot be captured

by traffic models based on Poissonian or Markovian stochastic processes. Traffic fractality has

been detected in almost every network service, including FTP, P2P, HTTP and video-over-IP. The

implications for network performance are serious: higher delays and loss ratios at router queues

than have been predicted by Poissonian models. However, the correlation induced by scaling opens

the opportunity for new fractal-aware mechanisms such as traffic predictors, congestion control and

resource-provisioning algorithms.

The inherent non-stationary nature of Internet traffic makes traffic characterization more difficult

and highlights the need for algorithms capable of detecting and adapting to the evolution of traffic.

Starting from the assumption of LRD with piecewise-stationary Hurst parameter (the mFGN model

described in Section 1.2.7) as a good model for network traffic, we have developed wavelet-based

algorithms capable of segmenting the traffic into regions with a homogeneous variance structure. In

the ideal case, we will be able to find the evolution of the scaling parameters of traffic across time.



38 CHAPTER 1. SCALING PROPERTIES OF NETWORK TRAFFIC



Chapter 2

Wavelet transforms

2.1 Introduction

This chapter provides an overview of the wavelet analysis, starting with a historical perspective

and following with the mathematical foundations involved. Two classical wavelet transforms will be

presented: the Continuous Wavelet Transform (CWT) and its scale- and location-discretized version,

the Discrete Wavelet Transform (DWT), with special emphasis on the latter and its associated

Multiresolution Analysis (MRA) capabilities.

Apart from the CWT and DWT other redundant, non-orthogonal variants will also be ana-

lyzed: the Wavelet Packet Transform (WPT), the Maximal Overlap Discrete Wavelet Transform

(MODWT), the Maximal Overlap Discrete Wavelet Packet Transform (MODWPT), the Dual Tree

(Complex) Wavelet Transform (DTWT). As we will see in Chapter 3 this redundancy will allow us

to enhance the methods for the analysis of the scaling parameters of network traffic.

2.2 A short history of wavelets

From a historical point of view, the wavelet analysis can be considered a new method, since it was

developed mainly in the 1980s, though its mathematical foundations rely on the work of Joseph

Fourier in the 19th century. Fourier developed the concept of frequency or spectrum analysis, the

foundation on which signal processing was built.

2.2.1 Fourier Transform

The Fourier Transform is one of the most important tools used in signal processing. It consists of the

product of the signal to be studied, x(t), and a set of complex exponentials of different frequencies

e−i2πft = cos (2πft) − i sin (2πft), where i =
√
−1 and −∞ ≤ f ≤ +∞ is the frequency at which

39
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the analysis is performed. The expressions for the continuous Fourier Transform and its inverse are

given by equations 2.1 and 2.2:

X(f) =
∫ +∞

−∞
x(t)e−i2πftdt (2.1)

x(t) =
∫ +∞

−∞
X(f)ei2πftdf (2.2)

The complex exponential is the eigenvector of the frequency response of a filter; i.e., is the

function that passes through a linear system without being modified (except a gain factor, the

eigenvalue). Therefore the Fourier transform expresses the original signal x(t) in terms of the

weights of the different frequencies present at the signal. That is why x(t) is said to be mapped

from the time domain to the frequency domain.

There is an implicit limitation in the Fourier Transform that affects the practical application

of the spectral analysis: the fact that the complex exponential basis of the Fourier Transform is

defined in the entire −∞ < t < +∞ support. This prevents the Fourier Transform from accurately

determining when a particular event takes place in the original signal. For example, the position of

a single peak added to a sinusoid can be completely masked in the spectrum, since it will appear

as a high-frequency noise, but nothing can be said about its position in time. Another example is

a signal composed of a single tone that changes its frequency abruptly from f0 to f1 at time t0;

the resulting spectrum will be a mix of both tones, but we will not be able to determine when the

change took place. Figure 2.1 illustrates the limitations of Fourier analysis in the aforementioned

cases. On the top it shows the time representation of a single tone that changes its frequency from

50 to 100 Hz, together with its Power Spectral Density (PSD), from which no information of when

the transition happens can be extracted. In the middle row, there is the plot of a signal composed

of two simultaneous tones of 50 and 120 Hz and its PSD, with two clear peaks at the corresponding

frequencies. On the bottom, the bitonal signal includes a peak with value 5 in the middle of the

time series. The PSD of the new time series is practically indistinguishable from the PSD of the

pure bitonal. The DWT does not see the high-frequency peak.

2.2.2 The Short-time Fourier Transform (STFT)

Gabor tried to adapt the Fourier Transform and make it able to analyze just a small part of the

signal at a time, through the use of a windowing technique. This involves isolating sections of

the signal, as if a window was applied over the original support. Gabor’s adaptation is known as

Short-Time Fourier Transform (STFT), and its outcome is a mapping of the original signal into a

two-dimensional function of time and frequency, which is called time-frequency plane.

The STFT relies on a compromise between the accuracy at which the analysis can be done in

both dimensions: if the window is short, time precision is enhanced at the cost of losing spectral
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Figure 2.1: Top left : A tone that changes its frequency from 50 to 100 Hz. Top right : Power spectral density

(PSD) of the frequency-changing tone. Middle left : Two simultaneous tones of 50 and 120 Hz. Middle right :

PSD of the bitonal signal. Bottom left : Addition of a peak to the bitonal signal. Bottom right : PSD of the

bitonal + peak signal.
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accuracy (i.e., we know better when an event occurs but cannot say precisely which are the frequen-

cies involved), and vice versa. This causes the time-frequency plane to be tiled in regions whose

dimensions are defined by the accuracy or dispersion in time and frequency.

The trade-off between time resolution and frequency accuracy is similar to that of Heisenberg’s

Uncertainty Principle in quantum mechanics, which imposes a constraint on the precision with

which we can measure the position of a particle and its momentum. This is a well-known natural

law that cannot be avoided by technological (or algorithmical) means. In its signal processing

equivalent, the principle states that, given a time-frequency tiling and an uncertainty or dispersion

in time ∆t and its counterpart in frequency ∆f , the product of both dispersions cannot be less

than a certain constant K:

∆t∆f ≥ K (2.3)

Therefore, if we want to measure precisely the frequency components of a signal, we will not

be able to detect events in time, and the contrary. Figure 2.2 (bottom left) illustrates the time-

frequency trade-off of the Gabor Transform and its associated tiling.

Though the STFT has been used for years, it was clear that a better tool was needed, capable

of flexibly adapting the accuracy trade-off to the characteristics of the signal.

2.2.3 The Wavelet Transform

In the first years of the 1980s the attention of signal processing researchers gradually turned from

frequency-based analysis to scale-based analysis when it started to become clear that an approach

measuring average fluctuations at different scales might prove less sensitive to noise, boundary

artifacts, and other effects. On the other hand, an alternative to the windowed Fourier Transform

was needed in order to provide a more flexible time-frequency plane tiling.

Wavelets provide an answer to the shortcomings of the STFT. The concept of frequency is

abandoned in favor of the concept of scale. Signals can be analyzed at different time scales, as

if a zoom was performed on them. The higher the scale, the lower the frequency components of

the signal analyzed at that scale (zoom out), and vice versa. Essentially, the wavelet transform is

a windowing technique with variable sizes: it uses longer time intervals where more precise low-

frequency information is required, and shorter lengths where the high-frequency components of

the signal are of interest. This gives rise to a non-uniform time-frequency tiling, where the time

and frequency dispersions ∆t and ∆f change with the scale (frequency), though the uncertainty

principle still holds: improving the resolution in time implies a loss of accuracy in frequency, and

vice versa.

Figure 2.2 compares the time-frequency tiling of the Wavelet Transform with those produced

by Gabor and Fourier transforms. It can be seen that while Gabor Transform tiles the plane in

a regular form, with constant dispersion in both axis, the Wavelet Transform chooses a different

trade-off between ∆t and ∆f at each scale.
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Figure 2.2: Time-frequency tilings, with the trade-off between time dispersion ∆t and frequency location

dispersion ∆f , for the Fourier Transform, the Shannon analysis (the usual time-based representation of

signals), the Gabor Transform and the Discrete Wavelet Transform.

Alfred Haar was the first mathematician to use what we now call a wavelet. In 1909 Haar used

for the first time a well-localized oscillating function in order to perform time-frequency analysis.

Though their techniques were known in the signal processing community, it was not until 1984 that

Jean Morlet and Alex Grossmann proposed the concept of wavelets in its present theoretical form.

Mathematicians such as Y. Meyer, Ingrid Daubechies [Dau92], Stephane Mallat [Mal89], Ronald

Coifman, and Victor Wickerhauser [CW92] have developed the methods of wavelet analysis and

have ensured their dissemination. Nick Kingsbury [Kin01, SBK05] and Ivan Selesznick [Sel01, Sel04]

have contributed recently to the development of alternative wavelet transforms. Wavelet analysis is

probably the most promising research area in the field of signal processing.

The following sections will focus on the mathematical underpinnings of the main wavelet-based

tools developed in recent years. Namely, we will discuss the following transforms:

- Continuous Wavelet Transform (CWT);

- Discrete Wavelet Transform (DWT);

- Wavelet Packet Transform (WPT);

- Maximal Overlap Discrete Wavelet Transform (MODWT);

- Maximal Overlap Discrete Wavelet Packet Transform (MODWPT);

- Dual Tree (complex) Wavelet Transform (DTWT).

Yet another wavelet transform, the Double Density Wavelet Transform (DDDWT), will not be

discussed in this chapter but is described in Appendix A.
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2.3 Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform (CWT) is defined as the scalar product of the original signal

x(t) and a set of translated and dilated versions of the so-called mother wavelet ψ(t).

Cx(a, b) =
∫

R
x(t)

1√
a
ψ
( t− b

a

)
dt, a ∈ R+ − 0, b ∈ R (2.4)

Therefore, the CWT coefficients measure how the original signal resembles locally (in terms of

time and frequency) the mother wavelet. The CWT performs a multiresolution analysis: we can see

the original signal at different time scales without losing its time evolution, since the scalar product

is done at all the possible locations. As aforementioned, the dispersion with which we can measure

the signal in both axis is constrained.

The key to understanding the properties of the CWT is the mother wavelet ψ(t). The mother

wavelet is chosen so that both its spread in time and frequency are relatively limited, thus ensuring

the locality of the analysis. It consists of a small wave (hence the name wavelet) defined on a

support, which is almost limited in time and having most of its energy within a limited frequency

band. While the time support and frequency band cannot both be finite, there is an interval in

which they are effectively limited. This causes the mother wavelet to be a bandpass function. If

ψ(t) has a compact support (i.e., is zero outside a certain range of values of t), the wavelet analysis

is well localized in time, at the cost of being not so well localized in frequency. There are mother

wavelets without compact support (though their values are close to 0 outside a certain range) that

enhance their frequency localization.

In addition to being not too much dispersed both in time and frequency, the mother wavelet is

required to satisfy the admissibility condition

∫
ψ(t)dt = 0 (2.5)

which asks for an oscillating function, and justifies the name “wavelet”.

Figure 2.3 illustrates how the shortcomings of Fourier analysis are avoided by the wavelet trans-

form. The two cases already presented in Figure 2.1 (and the bitonal signal contaminated with a

peak) are now analyzed with the CWT. In this figure the convention for representing the CWT

is the brighter the color, the higher the value of the coefficient. The first case is the tone with a

frequency change. It can be seen that the frequency of the first tone is centered in scale 9, while

the second tone is centered in scale 4. The transition point is clearly located in the middle of the

series, though it is more precisely seen in the higher frequencies (lower scales) and appears blurred

at the lower frequencies (higher scales). The second case consists of two tones of 50 and 120 Hz

with a peak of value 5 in the middle of the time series. Its wavelet representation shows a mix
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Figure 2.3: Top left : A single tone that changes its frequency from 50 to 120 Hz. Top right : The time-

frequency wavelet representation of the signal, with a clear transition point in the middle. Bottom left : The

two tones of 50 and 120 Hz with a peak of value 5 in the middle of the time series. Bottom right : The

wavelet representation of the signal. The anomaly is still clearly located in the middle of the time series.

of both tones, whose frequencies are more difficult to resolve than in the Fourier case, due to the

impairment in frequency dispersion, but the anomaly is still clearly located in the middle of the

time series.

The CWT analyzes the signal at all the possible scales through the variation of the dilation

parameter a, and at all time axis through the time-shifting parameter b. Its practical implemen-

tation, though, is limited to a certain range of discrete values for the scale (usually a ∈ N) and

the time axis (which, being the typical analyzed signal intrinsically discrete, is usually sampled at

the same sample rate as the signal x(t)). These are the conventions used in figure 2.3. Therefore,

the Continuous Wavelet Transform is usually not as continuous as one would desire. This is why a

discretized, sampled version known as DWT was developed.
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2.4 Discrete Wavelet Transform (DWT)

2.4.1 Definition

The Discrete Wavelet Transform (DWT) consists of the collection of coefficients

dX(j, k) = 〈X,ψj,k〉, j = 1, . . . , J, k ∈ Z (2.6)

that are obtained comparing (by means of scalar products) the continuous-time signal X(t) to be

studied with a set of analyzing functions

ψj,k(t) = 2−j/2ψ0(2−jt− k), j = 1, . . . , J, k ∈ Z (2.7)

As the CWT, this wavelet basis is constructed from a reference function ψ0(t), called the mother

wavelet, by the action of a change of scale operator dependent on the scale index j

ψj,0(t) = 2−j/2ψ0(2−jt), j = 1, . . . , J (2.8)

and a time-shift operator dependent on the time index k

ψ0,k(t) = ψ0(t− k), k ∈ Z (2.9)

The change of scale (or dilation) operator defines the scale of time over which the original signal is

observed, while the time-shift operator enables the selection of the time instant around which one

wishes to analyze it.

In the case of discrete-time signals, in principle, the DWT can only be performed on signals whose

length L is a power of 2, due to the dilation factor of 2 defined in Equation 2.8. There are methods

for extending the length to 2n through padding or circular shifts, for example (see [PW02]). Another

constraint holds for the depth J of the analysis, that obviously has to verify L ≥ 2J . Actually the

usual situation is L = 2J , denoted as full DWT ; that is, the analysis is performed at the deepest

level on a signal whose length is that of a power of 2.

2.4.2 Relation between CWT and DWT

The DWT is actually a discretization of the CWT, in which only certain values of a and b are

analyzed: a = 2j , b = k2j , j ∈ N, k ∈ Z. When these values are substituted in Equation 2.4,

Equation 2.6 is obtained.

2.4.3 Properties of the wavelet basis

In the analysis of scaling phenomena, the following two features of the wavelet basis play a key role.

Proposition 2.1. Since the wavelet basis is constructed from the change of scale operator given in

Equation 2.8, the analyzing family exhibits itself, by construction, a scale-invariance feature.
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Figure 2.4: DWT subband decomposition (J = 3).

As we saw in Chapter 1, the scaling properties of traffic can be understood as the absence of any

characteristic frequency (and therefore, scale) in the range of frequencies close to the origin. This

property can thus be interpreted as a scale invariance characteristic which is efficiently analyzed by

wavelets, as will be shown in Chapter 3

Proposition 2.2. ψ0(t) has a number N of vanishing moments which can be freely chosen, provided

N ≥ 1. By definition, this means that∫ +∞

−∞
tkψ0(t)dt = 0, k = 0, 1, 2, . . . , N − 1 (2.10)

or equivalently, that the Fourier transform of ψ0(t) satisfies

|Ψ0(f)| = O(|f |N ), f → 0 (2.11)

This property can be used to control divergences arising with processes having power-law spectra

at the origin. For k = 0, Equation (2.10) gives the aforementioned admissibility condition∫ +∞

−∞
ψ0(u) du = 0 (2.12)

which confirms that the mother wavelet is a bandpass (or oscillating) function. An important

consequence of the admissibility condition is that the wavelet transform is “blind” to nonzero mean

values of the original process X(t), that is:

E{dX(j, k)} = 0, j = 1, . . . , J (2.13)

A natural generalization consists of considering wavelets with more than one vanishing moment,

in the sense of Equation (2.10), since assuming that the number of vanishing moments is N allows

the analysis to be blind to polynomials of order up to N − 1. In other words, the removal of a

polynomial trend of order p is guaranteed by a wavelet with N ≥ p+ 1.

2.4.4 Multiresolution Analysis (MRA)

Subband decomposition

In the frequency domain the result of the DWT is a decomposition of the original signal X(t) in

subbands whose bandwidths are halved at each scale increase, due to the factor of 2 in the dilation

procedure). Figure 2.4 shows such a subband decomposition in the J = 3 case.
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This gives rise to a Multiresolution Analysis (MRA) [Dau92] in which the original signal X(t)

is decomposed in a low-frequency approximation at scale J, AJ(t), and a set of details Dj(t) for

each scale j = 1, . . . , J . The details Dj(t) represent the changes of the original signal on a time

scale τj = 2(j−1), while the approximation AJ(t) represents the average of the original signal at

time scale λJ = 2J . Note that if the length L of the original signal X(t) is such that L = 2J , that

is, the analysis is performed at the deepest level, then AJ(t) is composed by just a coefficient that

corresponds to the mean of the original signal.

In the time domain, the MRA consists of rewriting the information contained in the original

signal as a sum of approximations Aj(t) and details Dj(t) of X(t) .

X(t) = AJ(t) +
J∑

j=1

Dj(t) (2.14)

Note that the jth detail of X(t) corresponds to the information that is removed when going from

one approximation level to the next, coarser one: Dj(t) = Aj−1(t)−Aj(t). Therefore, equation 2.14

can be rewritten as

X(t) = D1(t) +A1(t)

= D1(t) +D2(t) +A2(t)

= D1(t) +D2(t) +D3(t) +A3(t)

...

=
J∑

j=1

Dj(t) +AJ(t)

Which is the relation between the components of the MRA and the wavelet coefficients? The

details Dj are easy to understand from what we already know of wavelet analysis: they are the

reconstruction of the analysis performed by the DWT, and can be obtained by the sum of the

dilates-and-translated wavelet mother ψ(t), weighted by the wavelet coefficients,

Dj(t) =
∑

k

dX(j, k)ψj,k(t) (2.15)

Similarly, the approximations Aj are the weighted sum of dilated and translated versions of

what is called the scaling function, denoted by φ(t). The scaling function is a low-pass function

derived from the mother wavelet, and its role in the computation of the approximation coefficients

is similar to that of the mother wavelet in the computation of the detail coefficients. Then, the jth

coarse or low-pass approximation of the original signal can be computed as

Aj(t) =
∑

k

aX(j, k)φj,k(t) (2.16)

where

φj,k(t) = 2−j/2φ0(2−jt− k), j = 1, . . . , J, k ∈ Z (2.17)
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and the approximation coefficients aX(j, k) at scale j are defined by

aX(j, k) = 〈X,φj,k〉, j = 1, . . . , J, k ∈ Z (2.18)

Equation 2.14 can then be rewritten as the Inverse Discrete Wavelet Transform

X(t) =
∑

k

aX(J, k)φJ,k(t) +
J∑

j=1

∑
k

dX(j, k)ψj,k(t) (2.19)

Therefore, the wavelet transform actually provides several approximations and details of the

original signal through the comparison of X(t) with the high-pass wavelet mother and the low-

pass scaling function, respectively. The weights obtained in these scalar products are the detail

coefficients dX(j, k) and approximation coefficients aX(J, k).

It is important to clearly differentiate the roles of the wavelet coefficients dX(j, k) and aX(j, k),

and the reconstructed functions Dj(t) and Aj(t). The former are the representation of the signal

in the wavelet domain, and depend on the scale j and the (discretized) time k, while the latter

are time functions defined in the whole original support of X(t) that represent the low- or high-

frequency components of the original signal.

Figures 2.5 and 2.6 illustrate the multiresolution analysis performed by the DWT. The first

figure shows wavelet and approximation coefficients of the bitonal + peak signal. Note that the

number of coefficients diminishes with scale. At lower scales of the detail coefficients (higher fre-

quency) the peak can be clearly identified, while at higher detail scales and the approximation (both

corresponding to lower frequencies) the peak disappears. Figure 2.6 shows the details and approx-

imations, which are time-aligned with the original signal. The higher-frequency details show the

peak even more clearly than the correspondent wavelet detail coefficients, while the approximations

smooth the peak, as expected.

Analysis of variance

Given the MRA equation for a DWT decomposition at level J , X(t) =
∑J

j=1Dj(t) + AJ(t), and

thanks to the orthogonality of the transform, the energy preserving condition holds:

‖X‖2 =
∫
X2(t)dt = ‖AJ‖2 +

J∑
j=1

‖Dj‖2 =
∑

k

aX(J, k)2 +
J∑

j=1

∑
k

dX(j, k)2 (2.20)

where ‖Dj‖2 represents the contribution to the energy of X(t) due to fluctuations at scale j, and

‖Aj‖2 is the energy of the J th coarse approximation of X(t) [PW02]. Due to the orthogonality of

the DWT, ‖Dj‖2 =
∑

k dX(j, k)2.

If the DWT analysis is performed at the deepest level J = log2(L) where L is the length

of the signal, and noting that in the case of Daubechies wavelets it can be shown [PW02] that

aX(J, k) = aX(J) = E[X]/
√
L, an analysis of variance (ANOVA) can be done on a scale-by-scale

basis:

σ̂2
X =

1
L
‖X‖2 − X̂2 =

1
L

J∑
j=1

‖Dj‖2 =
1
L

J∑
j=1

∑
k

dX(j, k)2 (2.21)
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Figure 2.5: Wavelet coefficients of the 601-sample signal composed by two tones of 50 Hz and 120 Hz with

a peak of value 5 at position 300. From top to bottom: the original signal, the wavelet detail coefficients

dX(j, k) at levels j = 1, 2, 3, and the approximation coefficients aX(3, k).

where σ̂2
X is the sample variance of X(t). This result will allow us to perform ANOVAs directly

on the DWT coefficients of scaling processes, instead of having to reconstruct the approximation

AJ(t) and details Dj(t) of the signal.

The decomposition of sample variance defined in 2.21 can be used to define a wavelet empirical

spectrum PW (τJ):

PW (τj) ≡
1
L

∑
k

dX(j, k)2 (2.22)

for which
J∑

j=1

PW (τj) = σ̂2
X (2.23)

2.4.5 Wavelet families

There are different types of wavelet families, whose qualities vary according to several criteria. The

most important are:

- the support of ψ0(t), that is, its speed of convergence to zero when time t goes to infinity;

- the number of vanishing moments;

- the regularity, which is useful for getting beneficial features, like smoothness of the recon-

structed signal, and for the estimated function in nonlinear regression analysis;

- the orthogonality (or biorthogonality) of the resulting analysis;

- the existence of an explicit expression.
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Figure 2.6: Multiresolution analysis of the bitonal + peak signal, with the details Dj(t) and approximations

Aj(t) for j = 1, 2, 3.

Wavelets that are often used in practice include the Haar wavelet, the Daubechies wavelets, the

Symlets, the biorthogonal wavelets, the Coiflets and the Meyer wavelets, among others. In the

following, we will focus on the first four of these families.

The Haar wavelet

Any discussion about wavelets begins with the Haar wavelet (Figure 2.7, top left), the first and

simplest. The Haar wavelet is discontinuous, and resembles a step function. Haar wavelet is also

given the name Daubechies db1, whose expression is

ψ(t) =


1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise

(2.24)

while the corresponding scaling function φ(t) is given by

φ(t) = 1 0 ≤ t < 1 (2.25)
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Daubechies wavelets

Ingrid Daubechies [Dau92] developed the so-called compactly supported orthonormal wavelets, thus

making discrete wavelet analysis practicable. Daubechies’ wavelets are also known as extremal phase

wavelets due to the properties of their transfer function, since they produce a minimum delay filter.

The wavelets of the Daubechies family are usually referred to as dbN, where N is the order, and

db the “surname” of the wavelet. The db1 wavelet, as mentioned above, is the same as the Haar

wavelet. Figure 2.7 shows on the top the db4 (middle) and db8 (right) wavelet functions.

Symlets or Least Asymmetrical wavelets

Symlets are called after symmetrical wavelets, though they are nearly but not exactly symmetrical,

and that is why they are also known as least asymmetrical (LA) wavelets. These are compactly

supported wavelets with the highest number of vanishing moments for a given support width. In

the usual notation symN, N is the order. When LA notation is used, symN corresponds to LA(2N),

where 2N is the length of the associated wavelet filter. Figure 2.7 shows on the bottom the sym1

(left) sym4 (middle) and sym8 (right) wavelet functions.

Figure 2.7: Example of Daubechies and Symlets wavelets.

The main property of this family is the near-linear phase of its filters, when studied in terms

of the frequency response. The phase function of the least asymmetric filters generated by the

LA wavelets have the smallest maximum deviation in frequency from the best fitting linear phase

function [PW02]. This is a nice feature if we are interested in a precise localization of some event in

time, since it allows us to meaningfully relate DWT coefficients to the original time axis. Daubechies

dbN wavelets do not have this property, while the phase shift introduced by Symlets can be easily

corrected.
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The phase properties of the Symlets depend on their order N. We can obtain approximate zero

phase wavelet filters by advancing the filter output by |2N − 1 + ν| samples, where

ν =


−N + 1, if N = 4, 6, 8 or 10 (i.e., N is even);

−N if N = 5 or 9;

−N + 2 if N = 14.

(2.26)

In particular, if the original signal X(n) of length L is associated with the actual time t0 + n∆t

(where t0 is an offset and ∆t is the sampling period), then wavelet coefficient dX(j, k) from the

symN or LA(2N) analysis is associated with actual time

t0 + (2j(n+ 1)− 1− |νH
j | mod L)∆t, n = 0, . . . ,

L

2j
− 1 (2.27)

where

|νH
j | =

(2j − 1)(2N − 1)
2

+N + ν − 1 (2.28)

More details of the phase properties of the different wavelet families, together with the derivation

of Equations 2.26 and 2.27 can be found in [PW02].

Biorthogonal wavelets

The properties of symmetry and exact reconstruction are impossible to achieve simultaneously with

FIR filters. A solution is the use of two wavelets instead of just one, where the first one, ψ̃(t), is

used in the analysis

CX(j, k) =
∫
X(t)ψ̃j,k(t)dt (2.29)

and the second one, ψ(t), in the synthesis.

X(t) =
∑
j,k

CX(j, k)ψj,k(t) (2.30)

This way “the useful properties for analysis (e.g., oscillations, null moments) can be concentrated

in the ψ̃ function; whereas the interesting properties for synthesis (regularity) are assigned to the ψ

function” [Coh92]. The two wavelets verify the biorthogonality conditions 2.31 and 2.32:∫
ψ̃j,k(t)ψj′,k′(t)dt = 0 for j 6= j′ or k 6= k′ (2.31)

∫
φ̃0,k(t)φ0,k′(t)dt = 0 for k 6= k′ (2.32)

As we will see in Section 2.8 for the DTWT, some wavelet transforms use biorthogonal wavelets

such as Antonini or LeGall families.
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Figure 2.8: Filter bank implementation of the DWT. Left : fast filter-bank-based pyramidal algorithm.

Right : the corresponding subband decomposition

2.4.6 Fast pyramidal algorithm

In 1988 Mallat [Mal89] developed a fast wavelet decomposition algorithm with a linear computa-

tional cost O(N) for data of length N , making it very suitable for the analysis of very large data

sets. The Mallat algorithm uses a recursive filter-bank-based pyramidal algorithm, sketched on Fig-

ure 2.8. This classical scheme in the signal processing community is also known as a two channel

subband coding using quadrature mirror filters (QMF).

Quadrature Mirror Filters

Two filters a(k) and b(k) are said to be QMF if their frequency responses A(f) and B(f) are such

that their squared gain functions are mirror images of each other:

|A(f)|2 = |B(
1
2
− f)|2 (2.33)

The main property of QMF filters is that they cover completely and uniformly the normalized

spectrum:

|A(f)|2 + |B(f)|2 = 2, ∀f (2.34)

Therefore, if one of the filters has a low-pass squared gain function, the other one will act as a

high-pass. It can be shown that the impulse responses a(k) and b(k) of two QMF filters of length

L satisfy

a(k) = (−1)k+1b(L− 1− k), ∀k (2.35)

and the inverse relationship

b(k) = (−1)ka(L− 1− k), ∀k (2.36)

Mallat’s algorithm

The main idea of the algorithm, coming from the nested structure of MRA, consists of the fact

that the dX(j, k) and the aX(j, k) can be computed through a discrete-time convolution involving

the sequence aX(j − 1, k) and two discrete-time QMF filters h(k) (the low-pass scaling filter) and
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Figure 2.9: The two decomposition filters for Daubechies 1, 4 and 8 wavelets. Left : db1 (Haar). Middle:

db4. Right : db8.

g(k) (the high-pass wavelet filter). The process is then iteratively repeated in the low-pass output

J times. Figure 2.9 shows the wavelet and scaling filters for db1, db4 and db8.

The output of the filters is downsampled by 2 in order to maintain orthogonality. Therefore, the

number of coefficients approximately (due to border effects) halves with each increase in j:

nj+1 ≈
nj

2
(2.37)

Wavelet and scaling filters

The wavelet filter g(k) is derived from ψ(t), and must satisfy some properties: zero mean, unit

energy, and must be orthogonal to even shifts. While the first condition is ensured by the wavelet

admissibility function, the latter two conditions are called the orthonormality property of wavelet

filters.

The scaling filter h(k) is derived from the wavelet filter and the QMF property (Equations 2.35

and 2.36). Therefore, the scaling function φ(t) is derived from the wavelet mother ψ(t) through the

QMF property.

Let’s compute the filters for the Haar wavelet. Its wavelet filter is given by g(k) = [1/
√

2,−1/
√

2],

while its scaling filter is given by h(k) = [1/
√

2, 1/
√

2]. The shape of both filters is actually the

same as the mother wavelet and scaling function, with a normalization factor required by the unit

energy condition. Figure 2.10 shows the squared gain functions of the Haar scaling and wavelet

filters, where the QMF property can be clearly appreciated. The Haar filters are not specially good
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Figure 2.10: Squared gain functions of the db1 (Haar) and db8 scaling and wavelet filters.

in terms of its selectivity; the ideal QMF filters should be abrupt. Higher order wavelets, such as

db8 show better frequency response, as shown in the same figure.

The frequency response of each subband of the DWT decomposition is derived from the compo-

sition of the filter bank. The compound filters and the associated subbands are depicted in Figure

2.11 for the Haar and db8 wavelets. The subbands generated by db8 have more abrupt frequency

responses.

What is the relationship between the filters and the mother wavelet and scaling function? The

mother wavelet can be obtained by an iterative procedure:

1) Take the wavelet filter g(k).

2) Upsample the filter by 2.

3) Convolve the upsampled filter with the scaling filter h(k).

4) Iterate steps 2-3.

The scaling function can be computed following a similar procedure, iteratively upsampling and

convolving the low-pass filter h(k). Figure 2.12 illustrates the procedure for obtaining the wavelet

mother and scaling function for db2.

2.4.7 MRA initialization for discrete-time data

Several authors [QF99, AF94, VTA00] point out the inaccuracy of the usual application of the DWT

to discrete-time signals. The discrete character of the DWT comes from the sampling of certain

values of the dilation and location parameters of the CWT, and does not involve a discrete-time

analysis.

The use of the discrete-time algorithm for computing the continuous-time scalar product dX(j, k) =

〈X,ψj,k〉 requires an initialization procedure if the data X(n) is intrinsically time-discrete. With-

out this prefiltering, the DWT and the subsequent estimation of features of the signal (the scaling

parameters, for example) results in errors. Veitch, Taqqu and Abry show in [VTA00] that the lack

of initialization can bias the LogScale Diagram.
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Figure 2.11: Top: The squared gain functions of the Haar 4-level filter bank. Bottom: The squared gain

functions of the db8 4-level filter bank.
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Figure 2.12: First, third and fifth iterations of the procedure for obtaining the scaling function (top) and

wavelet mother (bottom) for the db2 wavelet.

The idea of the initialization procedure is very simple. To the discrete-time signal X(n) we

associate a closely related continuous-time equivalent signal X(t), chosen such that the power

spectral density of both signals are identical in the interval −1/2 < f < 1/2. Being the spectra

identical, any conclusion on the spectrum of X(t) automatically holds for X(n).

X(t) is chosen as a sum of sinc funtions by the Shannon Sampling Theorem,

X(t) =
∞∑

n=−∞
X(n)sinc(t− n) =

∞∑
n=−∞

X(n)
sin(π(t− n))

(t− n)π
(2.38)

since this ensures that X and X coincide at integer times:

{X(k), k ∈ Z} = {X(k), k ∈ Z} (2.39)

Then, the multiresolution analysis can be initialized with

aX(k) =
∫ ∞

−∞
X(t)φ(t− k)dt

=
∞∑

n=−∞
X(n)

∫ ∞

−∞
φ(t− k)sinc(t− n)dt

=
∞∑

n=−∞
X(n)I(k − n)

= (X ∗ I)(n)

where ∗ denotes discrete-time convolution, and

I(m) =
∫ ∞

−∞
φ(t)sinc(t+m)dt (2.40)

depends only on the scaling function φ(t) associated to the wavelet transform. This initialization

technique has been used in our DWT-based analysis.
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2.5 Wavelet Packet Transform (WPT)

2.5.1 Introduction

As discussed in Section 2.4.1, each scale of the DWT represents a frequency range half as wide as

the scale below it. Conversely, the time resolution on each scale is half that of the scale below it,

due to the decimation step. These characteristics pose some problems:

- at the lower scales, discrimination of higher frequencies is sacrificed for time localization in

the transform;

- at the higher scales, vice versa, time localization in the transform is sacrificed for discrimina-

tion of lower frequencies.

We can overcome these problems by introducing the Wavelet Packet Transform (WPT) [CW90] (also

cited as Discrete Wavelet Packet Transform (DWPT)), a generalization of the DWT decomposition

that offers a more versatile signal analysis. The WPT provides an overcomplete expansion of the

original signal, in the sense that it gives more information than is strictly necessary in order to

reconstruct the original signal; i.e., is a redundant wavelet transform, also called a frame [Sel01]. If,

as in the case of the WPT, the energy preserving condition (Parseval’s theorem) holds, the frame

is said to be tight.

2.5.2 Filter bank implementation

In the DWT algorithm the LP/HP filter decomposition is not applied to the details dX(j, k), which

are not further processed. When we do elaborate upon them in the same way as the approximations

aX(j, k), a tree of possible decompositions grows, as depicted in Figure 2.13. The DWT algorithm

is just one branch of this tree.

Compared to the DWT algorithm, the WPT gives more flexibility. Instead of zooming in on

lower and lower frequencies (thus making only one subband decomposition possible), for a given

depth level J it generates a set of 2J possible subband decompositions (DWT being a particular

case), as shown in Figure 2.14 for the J = 2 case.

The logical consequence of the above is that, in addition to j for scale and k for time, the

WPT coefficients possess an additional index m, corresponding to the subband number. Since the

distinction between approximations and details no longer makes sense, we will refer to the WPT

coefficients by the notation WX(j, k,m).

Figure 2.15 illustrates the projection of such a decomposition in the scale-frequency plane. As

we can easily check from this figure, subbands with m = 1 constitute the DWT decomposition.

Figure 2.17 shows the squared gain function of the filter bank for a level 3 decomposition, when

using the sym4 or LA(8) wavelet. Note that the “ideal” pass-bands, marked with vertical lines, have

a length of 1/8th of the spectrum.
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Figure 2.13: Filter bank implementation of the WPT decomposition at level J = 2.

2.5.3 Basis selection and best basis algorithm

From the point of view of providing a basis for the data, the full (m, j) tree contains redundancy and

no longer represents an orthonormal basis as does the DWT algorithm. To obtain an orthonormal

basis, one has to select boxes from the decomposition of Figure 2.15 in such a way that the frequency

axis is covered horizontally without overlapping. As previously reported, choosing m = 1 is one

of the possibilities that leads to this result. On the other hand, there are several m values that

correspond to an incomplete decomposition (for example, m = 2), and some others to a redundant

one (for example, m = 0).

There are some algorithms for finding the best basis, depending on the goodness criteria. If

the metric is an additive measure, the optimum is given by Coifman and Wickerhauser’s best-

basis algorithm [CW92], whose total computational complexity is O(N log2N). The algorithm

consists of associating with each (m, j) subband an additive cost function M(m, j), and choosing

the subband decomposition that minimizes the total cost of all possible decompositions, starting

from the simplest one j = 1,m = 0 . . . 1 and expanding the tree branch only if the sum of the costs

of both leafs/subbands is less than the cost of the father leaf/subband.

One of the most popular additive cost functions, widely used in compression applications, is the

−`2 log(`2) norm, or entropy of the squared coefficients:

m(|W x(j, k,m)|) =

{
−W 2

x(j, k,m) log2W
2

x(j, k,m) if W x(j, k,m) 6= 0

0 if W x(j, k,m) = 0
(2.41)

where W
2

x(j, k,m) ≡ Wx(j,k,m)
||X||

A contribution to this field was made by Sola and Sallent [SSR94], who developed a fast splitting

algorithm (FSA) capable of performing a progressive orthogonal tiling, and thus allowing the real-

time operation of the best-basis algorithm. This is the algorithm we would like to use jointly with

the WPT-based estimator described in Chapter 3.
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Figure 2.14: The four possible subband decompositions generated by the WPT tree (J = 2).

Figure 2.15: WPT subband decomposition in the (j,m) plane for J = 3.

Figure 2.16: Left : the WPT subband decomposition for m=1, equivalent to the DWT. Right : a general

orthogonal subband decomposition.
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Figure 2.17: Squared gain functions for J = 3 and m = 0 . . . 7 for the sym4 or LA(8) WPT. The ideal

pass-bands are marked by vertical lines. Extracted from [PW02]. c©Cambridge University Press, reproduced

with permission.

2.5.4 MRA and ANOVA

Given an orthonormal decomposition, the energy preserving condition holds. For example, for the

Wx(2, k,m),m = 0 . . . 3 decomposition shown in Figure 2.13 we have

‖X‖2 =
∑

t

X2(t) =
3∑

m=0

‖Wx(2, k,m)‖2

= ‖Wx(2, k, 0)‖2 + ‖Wx(2, k, 1)‖2 + ‖Wx(2, k, 2)‖2 + ‖Wx(2, k, 3)‖2

=
∑

k

|Wx(2, k, 0)|2 +
∑

k

|Wx(2, k, 1)|2 +
∑

k

|Wx(2, k, 2)|2 +
∑

k

|Wx(2, k, 3)|2

=
3∑

m=0

∑
k

|Wx(2, k,m)|2

but we could also have an alternative complete decomposition such as

Wx(2, k, 0), Wx(2, k, 1), Wx(1, k, 1)

(corresponding to the DWT) and then

‖X‖2 = ‖Wx(2, k, 0)‖2 + ‖Wx(2, k, 1)‖2 + ‖Wx(1, k, 1)‖2

=
∑

k

|Wx(2, k, 0)|2 +
∑

k

|Wx(2, k, 1)|2 +
∑

k

|Wx(1, k, 1)|2

Therefore, for orthogonal decompositions the expressions of the ANOVA are similar to those of

the DWT. Non-orthogonal decompositions (either overcomplete or undercomplete) are a different

case, since no energy preserving is ensured. However, in Chapter 3 we will describe an ANOVA-like

analysis for the case of a general WPT decomposition, particularized for scaling traffic.
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2.5.5 Alignment

In section 2.4.5 the phase properties of some wavelet families were studied. In particular, the time

shifts that enable the correct alignment of events in the original signal and its counterpart in the

wavelet domain were derived. The same can be done for the WPT, with the novelty of adding the

new dimension m. Though it is relatively easy to compute the time shifts, the new dimension forces

us to express them in a table which will not be included here. The details can be found in [PW02].

2.6 Maximal Overlap Discrete Wavelet Transform (MODWT)

2.6.1 Orthogonality of the wavelet transforms

As we discussed in the previous sections, wavelet transforms can be classified as either orthogonal

(nonredundant) or non-orthogonal redundant, overcomplete). The DWT belongs to the first class,

whereas the WPT may be defined in an orthogonal or redundant form, depending on the selected

subband decomposition. The orthogonal transform is appealing for two main features:

- a better preservation of the compression ability, since only components relevant to reconstruc-

tion are included;

- the statistical decorrelation of the wavelet coefficients.

On the other hand, the major drawback of the DWT is its time- or shift-variance (i.e. the wavelet

coefficients of a delayed signal are not a time shifted version of those of the original signal) [PKC96b].

The time invariance property is particularly important in statistical signal processing applications,

such as parameter estimation of signals with unknown arrival time, or estimation of a parameter

that changes across time (as is our case). In other words, the orthogonal DWT is not capable of

tracking correctly the time evolution of the signal with the same precision at all scales, due to its

particular time-frequency plane tiling scheme, as already discussed in Section 2.5.2: lower scales

have more coefficients, giving more time resolution but less frequency resolution, and viceversa.

The introduction of the redundant Maximal Overlap Discrete Wavelet Transform (MODWT) is a

good way to overcome this problem.

Figure 2.18 gives an example of the time variance of the DWT. A 32-sample signal x(n) with

all samples equal to zero except x(16) = 5, and its shifted version y(n) with x(17) = 5 are analyzed

with the DWT, giving the MRA shown in the figure. It is obvious that the results of the analysis of

the time-shifted signal are not identical to the time-shifted version of the MRA. Figure 2.19 shows

the time invariance property of the MODWT. The same signals x(n) and y(n) are analyzed with

the MODWT, whose MRA applied to the time-shifted signal is identical to the time-shifted version

of the MRA (i.e., the approximations and details of y(n) are shifted versions of the approximations

and details of x(n)). All the analyses have been performed with the Haar wavelet, at level J = 3.

MODWT has been given a lot of different names in the literature: “Stationary Wavelet Transform

(SWT)”, “Undecimated DWT”, “Shift-invariant DWT”, “Wavelet frames”, and “Time-invariant

DWT”, among others.
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Figure 2.18: Top: MRA analysis of x(n) with the DWT. Bottom: MRA analysis of y(n) with the DWT.
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Figure 2.19: Top: MRA analysis of x(n) with the MODWT. Bottom: MRA analysis of y(n) with the

MODWT.
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2.6.2 Filter bank implementation

The MODWT [PKC96b] is obtained from the DWT by suppression of the downsampling stage,

as sketched in Figure 2.20. This causes the sequences d̃X(j, k) to have the same length at all the

branches of the filter bank.

The intuitive idea behind the MODWT is “to fill the gaps” caused by the downsampling step

in the standard wavelet transform. This leads to an over-determined, over-complete, or redundant,

representation of the original data, but one which has considerable statistical potential, as we will

see in Chapter 7. Given an MODWT performed at a depth of J scales, the result is overcomplete

by the factor J + 1, i.e. we get J details and one approximation, each one with the same resolution

as the original signal.

Figure 2.20: Left : Filter bank implementation of the MODWT decomposition at level J = 3. Right : The

subband decomposition generated by the MODWT at level J = 3.

2.6.3 Properties

What follows is a quick review of the main properties of the MODWT:

Subband decomposition

Despite the modifications in the time domain, the frequency decomposition performed by MODWT

(shown in Figure 2.20) is the same as that of the DWT.

Complexity

Regarding the computational complexity of the pyramid algorithm when applied to a signal X(n)

of length N , where N is a power of 2, the MODWT requires O(N log2N) multiplications, while the

corresponding DWT can be computed in only O(N) operations. The MODWT is clearly heavier

to compute, but its complexity is comparable to that of the Fast Fourier Transform.
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Figure 2.21: Example of the event alignment properties of the MODWT. The original signal is the 601-

sample composed of two tones of 50 Hz and 120 Hz, with a peak in the middle of the sequence. The signal has

been extended to 608 samples through zero-padding (this explains the border effects on the last samples).

The analysis has been performed at level J = 3 with the Haar (db1) wavelet. Left column: approximation

coefficients. Right column: detail coefficients.
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Figure 2.22: Left column: The autocorrelation functions for the detail coefficients of the DWT of a white

noise signal. Right column: The autocorrelation functions for the detail coefficients of the MODWT of a

white noise signal.
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MRA and ANOVA

As in the case of the DWT, the MODWT can perform a multiresolution analysis. The analysis of

variance can also be done with the wavelet coefficients but not with details D̃j and approximations

Ãj . The non-orthonormality of the MODWT is the cause of the inequality.

‖X‖2 =
∑

k

ãX(J, k)2 +
J∑

j=1

∑
k

d̃X(j, k)2 6= ‖ÃJ‖2 +
J∑

j=1

‖D̃j‖2 (2.42)

Alignment

In contrast to the DWT, the MODWT output is associated with zero phase filters, making it easy to

align events in the original time series with the wavelet coefficients. Figure 2.21 shows the alignment

features of the MODWT.

2.6.4 The correlation issue

Being a time-redundant transform, we expect the MODWT to introduce some kind of time correla-

tion in the analyzed signals. The decorrelation properties of the wavelet transforms will be presented

in Chapter 3, but just to help the reader build some intuition, we want to emphasize that it is the

orthogonality of a transform which ensures that a correlated signal in time domain is mapped

into a decorrelated signal in the transformed domain. Therefore, the DWT provides uncorrelated

dX(j, k) coefficients when analyzed in the “time” domain k, while the MODWT coefficients present

a certain degree of correlation that increases with the scale j at which the analysis is performed.

The explanation for this increase is the “averaging” of the wavelet filter bank analysis when the

downsampling step is not done.

Figure 2.22 shows an example of the aforementioned properties of the transforms. An uncor-

related white noise signal of length L = 215 = 32768 has been analyzed with both the DWT and

the MODWT, using the Haar wavelet. The figure shows the autocorrelation function ρ(m) for

the first 25 lags, together with the 95% confidence interval (shown as horizontal lines). While the

DWT coefficients are perfectly uncorrelated, MODWT coefficients are strongly correlated, and the

phenomenon is intensified with scale.

As we will see in Chapters 4 and 7, the correlation properties of the wavelet transforms will be

important when a change point detection algorithm is applied at their outputs, since these change

detection methods expect an uncorrelated input. From this point of view the DWT is clearly better

than the MODWT. On the other hand, the detection will be enhanced with the time-shift invariance

properties of the MODWT, which allows us to accurately locate the position of changes in the time

series. Therefore, we will face a trade-off between localization capabilities and correlation.
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2.7 Maximal Overlap Discrete Wavelet Packet Transform

(MODWPT)

Just as the MODWT was derived from the DWT by skipping the downsampling step of the pyramid

algorithm, a Maximal Overlap version of the WPT can be defined in the same way. Figure 2.23

illustrates the filter bank implementation of the MODWPT.

Figure 2.23: Filter bank implementation of the MODWPT decomposition at level J = 2.

The MODWPT is a highly redundant transform in both time and frequency domains; actually,

it is the most redundant transform that can be defined. It includes the nice properties of time-shift

invariance of the MODWT and the flexible subband tiling of the WPT. Its ANOVA is similar

to that of the WPT, with the only difference that, as in the MODWT case, the ANOVA can be

performed only on the wavelet coefficients and not on the “approximations” and “details” (though

these terms do not have any sense in the context of a WPT-like transform).

2.8 Dual Tree (Complex) Wavelet Transform (DTWT)

2.8.1 A not-so-redundant transform

The main drawbacks of the MODWT are the computational complexity and the correlation induced

in the output, as both phenomena are caused by the redundancy of the transform. On the other

hand redundancy is good for our interests, since it allows us to accurately locate the position

where a certain event takes place. Therefore, we face a trade-off where the DWT and the MODWT

represent the extreme positions. But there are other, alternative wavelet transforms that can be

considered as an intermediate point.

An interesting and recent development is Kingsbury’s Dual Tree (Complex) Wavelet Transform

(DTWT) [Kin01]. The transform can be interpreted as a dual DWT tree in which one of the trees

analyzes the odd samples, while the even-numbered samples are analyzed by the second tree, thus
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Figure 2.24: Filter bank for the DTWT decomposition at level J = 3. The parentheses mark the delays of

the Q-shift filters, where (q) means 1/4 of a sample.

introducing a relative delay of a sample between them. This is somehow equivalent to skipping the

downsampling step at the first level of the filter bank. For the second and subsequent levels, the

filter bank scheme is identical to that of the DWT on both trees, as shown in Figure 2.24. The

DTWT doubles the sampling rate of the original DWT; i.e., for an input x(n) of length N samples,

the DTWT generates 2N samples. Recall that the effective rate of a MODWT at level J is J + 1

times higher than the DWT, since it generates JN detail samples and N approximation samples

at the output.

The main feature of the DTWT is that, when used with the appropriate filters, it achieves

an almost shift-invariant analysis with almost uncorrelated coefficients at the expense of a slight

increase in redundancy when compared with DWT. Therefore, the DTWT maintains almost all

the beneficial features of the MODWT without paying such a high price in terms of redundancy,

correlation and complexity.

The properties of the DTWT can be summarized as follows [Kin00]:

• Approximate shift invariance;

• Perfect reconstruction using short linear-phase filters;

• Limited redundancy, independent of the number of scales;

• Efficient order-N computation (only twice the computational complexity of the classical

DWT);

• Good directional selectivity1.

1This is a very valuable property for 2-D image coding but not so important in our 1-dimensional time analysis.
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2.8.2 The complex nature of the DTWT

The complex term usually applied to the DTWT comes from the interpretation of every couple of

coefficients from both trees (a and b) as the real and imaginary parts of a complex number a+ ib.

This is equivalent to using a DWT-style filter bank in which the filters are complex [MK98]; i.e.,

the filters have complex coefficients and generate complex output samples.

As a complex signal, the output of the DTWT can be expressed in terms of real and imaginary

parts, or as modulus and phase. In Chapter 8 we will see how to interpret these magnitudes for our

interests. Figure 2.25 shows a complex wavelet, with its real and imaginary parts (shifted), and its

modulus (centered).

2.8.3 DTWT filters

Contrary to what we have learned about the “classical” wavelet transforms (DWT, MODWT, WPT)

built from the couple of scaling/wavelet filters, eight (potentially) different filters are involved in

the computation of the DTWT:

• ga(k) and ha(k): the high-pass and low-pass filters for the first level in tree a,

• gb(k) and hb(k): the high-pass and low-pass filters for the first level in tree b,

• g′a(k) and h′a(k): the high-pass and low-pass filters for the levels above the first, in tree a, and

• g′b(k) and h′b(k): the high-pass and low-pass filters for the levels above the first, in tree b.

As aforementioned, we want to double the sampling rate and simulate the elimination of the

downsampling. This is equivalent to ensuring the delays of filters gb(k) and hb(k) are one sample

offset from ga(k) and ha(k). In this way we ensure that the level 1 downsamplers pick up different

samples in each tree (the even ones for one tree and the odd ones for the other). Furthermore, in

order to obtain uniform intervals between samples from the two maximally decimated trees above

level 1, the filters in one tree must delay the signal by half a sample (at each filter rate) from those

in the other tree. If we want to keep the linear phase property, this requires odd length filters in

one tree and even length filters in the other. Greater symmetry can be obtained if each tree uses

odd and even filters alternatively from level to level.

There are different possibilities for designing the filters. The first level filters are much like the

classical DWT filters, while the filters above the first level are less ordinary. For the first level,

biorthogonal filters such as Antonini (9,7), LeGall (5,3), or Near-Symmetric (5,7) and (13,19) tap

filters are the usual choice [Kin01]. The filters above the first level must ensure the half a sample

delay, which can be obtained by 0 and 1
2 delays (such as the so-called near-orthogonal odd/even

filter sets [Kin04]).

The odd/even filter approach has some drawbacks: the frequency response of both tress are not

exactly identical; and the sampling structure generated is not totally symmetrical (wavelet and

scaling functions at a given scale are not well aligned). Better performance can be obtained with

the quarter-shift or Q-shift orthogonal filters. These filters, of even lengths ((6,6), (10,10), (14,14),

(16,16) and (18,18) taps), are interleaved on both trees with a delay of approximately 1
4 and 3

4 of a
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Figure 2.25: Example of a complex wavelet with real and imaginary parts (in blue and green, respectively)

and its modulus (in red).

sample [Kin01], as shown in Figure 2.24. Since the Q-shift filter coefficients are no longer symmetric,

orthonormal perfect-reconstruction filter sets can be constructed, just like Daubechies filters. In this

case the reconstruction filters are the time reverse of the equivalent analysis filters in both trees,

and all filters above level 1 are derived from the same orthonormal prototype set [Kin01].

2.8.4 Shift invariance

The almost time shift invariance properties of the DTWT are illustrated in Figure 2.26. A step

function with 16 one-sample shifts is analyzed with the DTWT and the DWT. The former out-

performs the latter, since the DTWT details and approximations are almost exact shifted versions,

while the DWT signals are completely different.

2.8.5 Multiresolution analysis and ANOVA

A DTWT-based MRA can be performed in the same way as the DWT or MODWT cases, except

that for each detail or approximation we get a complex number with the contributions from both

trees. The reconstruction into a real signal is achieved by separately reconstructing the real and

imaginary parts using biorthogonal filters designed for perfect reconstruction with the corresponding

analysis filters, which results in two real signals. Averaging both signals we get the original signal.

Given an original signal X(t) and a DTWT decomposition with complex details at level j, Dj(t)

for j = 1 . . . J , and a complex approximation at level J , AJ(t),

X(t) =
J∑

j=1

Dj(t) +AJ(t) (2.43)

The whole DTWT system is a wavelet frame [Mal98]) with a redundancy factor 2. If the filters

are designed in such a way that the analysis and reconstruction filters have very similar frequency

responses, then it is an almost tight frame, which means that energy is approximately preserved when
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Figure 2.26: Example of the shift invariance properties of the DTWT. Sixteen shifted step functions are

analyzed with the DTWT and the DWT at level J = 4. The approximations and the details are shown for

both transforms.

Figure 2.27: Autocorrelations of the real and imaginary parts and the modulus of the DTWT wavelet

coefficients of a 32768-sample white noise signal.
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signals are transformed into the wavelet domain [Kin01]2. Therefore, no exact energy preserving

condition holds for the DTWT and no exact ANOVA can be performed. This would be a drawback

for our purposes, since as we will see in Chapter 3, the scaling parameter estimation methods

rely on a scale-by-scale analysis of variance. However, if the two DWT-style trees are orthonormal

(the usual situation), energy is preserved [SBK05]. Given an original signal X(t) and its DTWT

decomposition with complex wavelet coefficients at level j dX(j, k) for j = 1 . . . J and a complex

approximation coefficients at level J , aX(J, k),

‖X‖2 =
∑

t

X2(t)

= (Re(aX(J, k)))2 +
∑

k

(Im(aX(J, k)))2 +
J∑

j=1

∑
k

(Re(dX(j, k)))2 +
J∑

j=1

∑
k

(Im(dX(j, k)))2

We provide now an example of the approximation of the analysis of variance. A white noise signal

of 32768 samples, similar to the one analyzed in Section 2.6.4, is decomposed with the DTWT.

The energy of the original signal, ‖X‖2 =
∑

tX
2(t) = 52368. The energy of the real and imaginary

parts of the wavelet detail coefficients and the approximation coefficients is shown in Table 2.1. The

relative difference between the energy of the original signal and the the sum of the energy of the

subbands of the DTWT is as low as 1.8e− 4.

||dX(1, k)||2 ||dX(2, k)||2 ||dX(3, k)||2 ||dX(4, k)||2 ||aX(4, k)||2 Total

Real 13121 6398 3329 1701 1634 26184

Imag 12988 6511 3351 1674 1660 26184

Total 26109 12909 6680 3375 3294 52368

Table 2.1: Energy decomposition of the white noise signal analyzed with the DTWT at level J = 4.

2.8.6 Correlation

The presence of high correlation was mentioned in Section 2.6.4 as one of the drawbacks of the

MODWT, and this was one of the main reasons for considering the DTWT as an alternative. Thanks

to the low redundancy factor (2) when compared with the DWT, the DTWT keeps correlation at

a low level, though different from zero. We will not provide a mathematical treatment but just an

example. Figure 2.27 shows the autocorrelation function of the real and imaginary parts and the

modulus of the DTWT of a white noise signal of 32768 samples. The real and imaginary parts are

uncorrelated, while the modulus show a short correlation, usually confined in the first lag, at most.

The correlation level does not increase significantly with the scale.

2A tight frame is one where the signal reconstruction can be performed with the transpose of the forward transform.
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2.9 Summary of the chapter

This chapter began with an intuitive introduction to wavelet analysis, starting with the continuous

CWT and later with the orthogonal, fully downsampled DWT. The DWT is a powerful tool whose

main property is the capability of performing a multiresolution analysis, in which the original

signal is decomposed in a low-pass approximation and a set of high-frequency details. Another

important feature is its ability to perform scale-based analysis of variance, either with the wavelet

and approximation coefficients, or with the details and approximations as time functions. The

MRA and ANOVA capabilities open the way towards developing a multi-scale time event detector,

in which a certain event in time (a change of variance, a change in the scaling parameters of

traffic) can be detected by the alignment of events seen at different scales. Finally, the DWT

is easily implemented as a quadrature-mirror filter bank, iterated in the low-pass subband. The

computational complexity of the scheme is very low.

However, the DWT presents some drawbacks. Its time resolution at higher scales can be very

low, due to the trade-off between the dispersion of time and frequency analysis. Its lack of shift

invariance is another problem; since the time events we are looking for will not necessarily be

aligned with the boundaries of the wavelet analysis, the result of the MRA and ANOVA for the

same signal would be different depending on the relative time shift between the signal and the

wavelet transform.

An alternative to both the time-resolution and shift-invariance problems is the non-orthogonal,

time-redundant MODWT. This transform is perfectly shift-invariant and provides the same time

resolution at any scale. However, its computational complexity is also increased notably when

compared with the DWT and, what is more, introduces correlation in the wavelet coefficients.

Since the statistical methods for detecting changes in time series usually assume an uncorrelated

input, this would prevent us from using the MODWT as planned.

If the redundancy introduced by the MODWT is in the time axis, another wavelet transform

known as Wavelet Packet (WPT) is its counterpart in the frequency domain. The WPT generalizes

the filter bank by allowing all the possible dyadic subband decompositions; i.e, by letting the

quadrature-mirror filter bank be iterated in both the high-pass and the low-pass outputs. This

results in a total flexibility for choosing the transform basis, either orthogonal, undercomplete or

overcomplete. This transform paves the way for applying a time-varying basis analysis in which the

signal is studied with a subband decomposition scheme that adapts to the spectral properties of

the time series under study. An MRA and ANOVA can be performed with the WPT.

Two recently developed, time-redundant wavelet transforms known as Dual Tree (Complex) WT

and Double Density WT (see Appendix A) are somehow between the DWT and the MODWT. They

both provide near-time-shift invariance and a moderated correlation (being the DTWT better than

the DDDWT), while effectively doubling the sampling rate of the classical DWT. MRA and ANOVA

can be performed with these transforms, though the latter only works with the transform coefficients

and not with the approximations and details. These two transforms provide an intermediate position

in the trade-off between (undesired) correlation and (desired) redundancy.



Chapter 3

Static estimation of the scaling

parameters of self-similar processes

3.1 Introduction

As pointed out in Section 1.3 scaling behavior has been detected in several measurements of the

traffic carried by packet switching communication networks. This phenomenon is surprising because

of its universality, but also because of the wide range of scales over which scaling holds.

This chapter deals with the issues of identification and measurement of scaling behaviour, and

also reviews the results regarding the static situation in which scaling parameters are (ideally)

constant. Though this is mathematically convenient, reality is not as nice. Nonstationarities are

expected in both traffic volume and scaling behavior. A typical situation is when the Hurst param-

eter of a LRD process X(t) changes over time. In this case, if H(t) is a deterministic function with

enough regularity, the process is said to be locally monofractal. Such a process is clearly not sta-

tionary, since its distribution depends by definition on the deterministically changing H(t), but this

nonstationarity derives from a true scaling behaviour. Therefore, the static estimation algorithms

have to be modified in order to adapt them to changing situations; this will be the topic of Chapter

5.

We want to stress the fact that the development of such measurement techniques are not only

important by themselves; they are also useful for other studies even if not directly related to scaling.

The presence of scaling affects the estimation of other parameters, not merely those that describe

scaling [AFTV00]. An example is the estimation of the mean of a data set of length N from a

second-order stationary process X(t), with mean η and variance σ2. The sample mean estimator is:

η̂ =
1
N

N∑
t=1

X(t)

Skipping the details, we have that [VA99]:

77



78 CHAPTER 3. STATIC ESTIMATION OF THE SCALING PARAMETERS

- ifX(t) is SRD, the sample mean asymptotically follows a normal distribution with expectation

equal to η and second moment

E{η̂ 2} =
σ2

N
, N � 1

- if X(t) is LRD, the sample mean is also asymptotically normally distributed with expectation

equal to η and second moment

E{η̂ 2} =
2cγNα−1

α(1 + α)
, N � 1

Therefore, the variance of the sample mean estimator of an LRD process decreases with N in a much

slower way than the classical, Poisson-style case. This has strong implications for the computation of

confidence intervals. It is also a powerful example of the importance of the second LRD parameter,

as discussed in Section 1.2.3. Since the variance is proportional to cγ , it follows immediately that the

confidence intervals about the sample mean estimate are essentially proportional to √cγ . Another

example of the importance of the second order parameter is given in [VA99], where it is proved that

for queues fed with LRD traffic queueing delays increase when cγ increases. This is consistent with

the role of the second order parameter as a quantitative or volume measure of the LRD phenomenon.

This chapter focuses on the wavelet-based techniques that allow the measurement of scaling

under the hypothesis of monofractality, that is, of stationarity of the scaling parameters (and, in

particular, of the Hurst parameter) across time. To obtain this goal, we first present the details

of the Abry-Veitch estimator), a DWT-based estimator built on a graphic tool called the LogScale

Diagram [VA99]. This estimator is widely accepted as the most accurate, flexible and computation-

ally efficient estimator of (static) scaling. But as we discussed in Chapter 2, the DWT has some

limitations. That is why we extend the estimator to other, alternative wavelet transforms with

better properties.

The Wavelet Packet Transform (WPT) is one of these alternatives. Recalling the theory pre-

sented in Chapter 2, the WPT provides an overcomplete representation of the original signal, by

iterating the low-pass / high-pass filter bank in a full binary tree. This generates 2j subbands at

each scale j, and a total of 2J+1 − 1 subbands for a J scales decomposition. The identification of

the subbands cannot be done solely by the scale j, and a new parameter m = 0 . . . 2j−1 is needed;

therefore, we get a (j,m) subband map of the processes under study.

We have developed an extension of the Abry-Veitch estimator for the WPT decomposition,

capable of performing an estimation from partial (for fixed j and variable m), global (for all j and

m) or arbitrary decompositions of the subband map. Section 3.3.1 presents the analytic elements

of the estimator, together with its application to synthetic FGN traces and real traffic traces. The

contributions of this chapter regarding the WPT estimator have been described in [RS02, RS04a,

RS04b, Min05].
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3.2 DWT-based estimation

3.2.1 Nice properties of the wavelet transform

Why is the wavelet transform so appealing for studying scaling processes? The following wavelet

properties are the key [PW00]:

(1) The wavelet basis, being constructed through a dilation procedure, is intrinsically invariant

with scale, just like scaling processes. This makes it well suited for analyzing such processes.

(2) The correlation of a scaling process in the time domain is absorbed by the wavelet transform,

thus decorrelating the process in the wavelet domain.

(3) The polynomial trends of order up to N − 1 present in the scaling process are eliminated by

the wavelet transform, as long as the mother wavelet ψ(t) has N vanishing moments:∫
tkψ(t)dt = 0, k = 0 . . . N (3.1)

3.2.2 DWT of self-similar processes

The wavelet coefficients dX(j, k) of an H-SS process X(t) reproduce the scaling property:

(dX(j, 0), dX(j, 1) . . . dX(j,Nj − 1)) =d 2j(H+ 1
2 )(dX(0, 0), dX(0, 1) . . . dX(0, Nj − 1)) (3.2)

where Nj is the number of wavelet coefficients at scale j. For second-order processes, a consequence

of Equation 3.2 is:

E(dX(j, k)2) = 2j(H+ 1
2 )E(dX(0, k)2) (3.3)

In the case that X(t) has stationary increments, H-SSSI, the following properties hold:

P1 H-SSSI The wavelet coefficients for a certain scale j are a stationary process. In this case,

Equation 3.3 reduces to:

E(dX(j, k)2) = 2j(H+ 1
2 )C(H,ψt)σ2, ∀k (3.4)

where C(H,ψt) =
∫
|t|2H(

∫
ψ(u)ψ(u− t)du)dt and σ2 = E(X(1)2.

P2 H-SSSI Given the covariance of an H-SSSI process X(t),

E(X(t)X(s)) =
σ2

2
[|t|2H + |s|2H − |t− s|2H ] (3.5)

and given that N ≥ H + 1
2 , then the correlation between wavelet coefficients at j, k and j′, k′

is small and depends on N:

E(dX(j, k)dX(j′, k′)) ≈ |2jk − 2j′k′|2H−2N when |2jk − 2j′k′| → +∞ (3.6)
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3.2.3 DWT of LRD processes

Recall the properties of the wavelet basis presented in Section 2.4.1. For a LRD process, these

features engender the following key properties [VA99] of the wavelet coefficients dX(j, k) over a

range of scales j = j1, . . . , j2 where the power-law scaling holds.

P1 LRD Due to Proposition 2.1, the process {dX(j, k), k ∈ Z} is stationary if N ≥ (α− 1)/2 and

the variance of the wavelet coefficients accurately reproduces the underlying scaling behaviour

of the data:

µj = E{dX(j, k)2} ∼ 2jα cfC(α, ψ), j → +∞ (3.7)

where α and cf are the LRD parameters, and C is given by the integral

C(α, ψ) =
∫ 1/2

−1/2

|f |−α|Ψ(f)|2 df (3.8)

P2 LRD Due to Proposition 2.1 and property P1, the dX(j, k) are a collection of quasidecorrelated

random variables. This makes the time correlation caused by LRD disappear in the wavelet

domain(j, k). Moreover, the higher N is, the shorter is the correlation:

E(dX(j, k) dX(j, k′)) ≈ |k − k′|α−1−2N , |k − k′| → +∞ (3.9)

3.2.4 Summary for scaling processes

Let X(t) be either an H-SSSI process, LRD process, a generalized second-order stationary 1
f -

spectrum process, or a fractal process. The wavelet coefficients of such a process, {dX(j, k), k ∈ Z}
are stationary if N ≥ (α − 1)/2, and its variance follows Equation 3.7 within a range of scales

j1 . . . j2. Then,

• If the original process was a H-SSSI process, α = 2H − 1, C(α, ψ) is to be identified from

Equation 3.4, and j1 = −∞, j2 = +∞. Therefore the alignment is strict across all the scales;

ideally over an infinite range.

• In the case of an LRD process, α comes from the definition of the spectral density of such a

process: ΓX(f) ∼ cf |f |−α. C(α, ψ) is to be identified from Equation 3.4, j1 is to be identified

from the LD, and j2 = +∞. In this case the alignment holds only from a certain lower cut-off

scale j1 but extends asymptotically towards infinity.

• For a generalized second-order stationary 1
f process, α is defined also from ΓX(f) ∼ cf |f |−α,

for f1 ≤ f ≤ f2, C(α, ψ) =
∫
|f |−α|Ψ(f)|2df , and j1 and j2 are derived from f1 and f2.

• Finally, for a general fractal process α = 2h+ 1, expressions for C(α, ψ) can be found in the

literature (see [AFTV00] for the references), j1 = 1, and j2 can be identified from the LD.
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3.2.5 Extension to multifractal processes

The analysis of the scaling behavior in the wavelet domain, shown in Equation 3.7, can be extended

to other scaling processes that cannot be expressed with a single scaling parameter. For multifrac-

tional Brownian Motion processes such as those presented in Section 1.2.7, the scaling exponent

h(t) is no longer constant in time and depends on the local properties of the process. In this case,

E[(X(t+ τ)−X(t))2] ≈ |τ |2h(t) for τ → 0, and the wavelet analysis gives a time-dependent LD in

which the slope α(t) = 2h(t) + 1.

For general multifractal processes things are not so nice. To begin with, the small scales of

these processes show a behavior that is extremely variable over time. The local regularity of almost

every sample path |X(ω, t + τ) − X(ω, t)| ∼ |τ |h(ω,t) for τ → 0 (where ω is an element of the

probability space underlying the process) is actually a fractal. It is then impossible to follow the

time variations of the scaling exponent; instead, it is studied statistically. An example of such a

study is the Hausdorff multifractal spectrum D(h) which consists of accounting the set of points

where h(ω, t) = h. A way to obtain the multifractal spectrum are the partition functions Sq(t) =∫
|X(ω, t+ τ)−X(ω, t)|qdt, which exhibit power-law behavior Sq(t) ∼ |τ |ζ(q). The connection with

wavelets comes from considering the wavelet coefficients as the increments of the sample path.

Therefore, the wavelet coefficients are studied not only in their second-order moment, but on the

qth moment, E{dX(j, k)q} and α = ζ(ω, q) + q/2.

Throughout this thesis we will focus our attention on monofractal (self-similar, LRD) processes.

3.2.6 The LogScale diagram

Property P2 LRD is the key to understanding the advantages of performing LRD and self-similar

analysis in the wavelet domain. Contrary to the problematic situation in the time domain due

to the long-range dependence and possible non-stationarities of the original process X(t), in the

wavelet domain we deal with the stationary, SRD processes dX(j, k) for each j. This results in a

very favorable statistical property: the stationarity in the wavelet domain results in a low variability

of averages across the time index k, contrary to what happens in the time domain.

The following expression has an important role in our analysis:

µ̂j =
1
nj

nj∑
k=1

dX(j, k)2 (3.10)

where, as in Equation (2.37), nj is the number of available wavelet coefficients at scale j.

The properties of the random variable µ̂j are [VA99]:

• it is a nonparametric, unbiased and efficient estimator of the variance µj of the process dX(j, k)

for a certain j.

• is a way of concentrating the second-order behaviour of X(t) at scale j.

• µ̂j are weakly dependent, making the analysis at each scale almost decoupled from those at

other scales.
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Therefore, a study of µ̂j as a function of j will give us an analysis of the second-order dependence

of X(t) on scale j. The underlying power-law dependence on j of the variance µj of the processes

dX(j, k) at each scale can be easily analyzed by taking the logarithms of both sides of Equation

(3.7).

log2(µj) = jα+ log2(cfC) (3.11)

This relation strongly suggests a linear regression approach for estimating (α, cf ), where the slope

of the regression would estimate α and the intercept would be related to cf . In other words, the

scaling parameters could be extracted by considering a plot of

yj = log2(µ̂j) = jα̂+ log2(ĉfC) (3.12)

against j. In [VA99], Abry and Veitch call this plot (together with confidence intervals about the yj)

the LogScale Diagram (LD). The complication here is the nonlinearity introduced by the log2, that

biases the estimation. The problem comes from the fact that the expectation of the logarithm is not

equal to the logarithm of the expectation; E[log()] 6= log(E[]). We will see in the next paragraph

how this problem can be circumvented under reasonable hypotheses. Simplifying things slightly, we

confirm that the fundamental approach is indeed a linear regression of yj . In particular, a weighted

linear regression will be used as the variances of the yj vary with j due to the different quantity of

available samples nj at each scale; recall that the DWT approximately halves the samples at each

iteration of the pyramidal algorithm.

Examples of LogScale Diagrams with their correspondent estimated regression lines are given

in Figure 3.1 and Figure 3.2. The first plot is for a 131072-samples FGN synthetic trace with Hurst

parameter H = 0.8 (fgn08.mat), while the second is for the BC-pAug89 Bellcore trace aggregated

at 10 msec (pAug8910ms.mat). Further information about the two traces can be found in Sections

3.2.9 and 3.2.10, respectively. In both cases, the DWT decomposition was performed using the

db1 wavelet. Confidence intervals about the yj , shown as vertical lines at each scale j in the LDs

of Figure 3.1 and Figure 3.2, are seen to increase monotonically with j as one moves to larger

and larger scales, due to the decrease in nj as j increases. The intervals are derived from the

variance σ2
j = V ar{yj} under Gaussian assumptions of the detail coefficients distributions [VA99].

The diagrams were obtained by the Matlab code developed by Patrice Abry and Darryl Veitch,

available at [VA].

3.2.7 Using the LogScale Diagram

The LD allows us to visualize, detect and estimate the scaling properties present in the signals under

study. The detection of scaling with the LogScale Diagram consists of the identification of region(s)

of alignment and the determination of their lower and upper cutoff octaves, j1 and j2, respectively.

It must be emphasized that the concept of alignment defined in terms of the confidence intervals

for the yj , and not in terms of the alignment of the yj themselves. As mentioned earlier, the µ̂j ,

and hence the yj , are weakly dependent, resulting in a natural and desirable variation around the

calculated regression line.
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Figure 3.1: LogScale Diagram and estimated regression line for a 131072-samples FGN synthetic trace

with H = 0.8, using db1 wavelet.

Figure 3.2: LogScale Diagram and estimated regression line for the BC-pAug89 Bellcore trace aggregated

at δ = 10 msec, using db1 wavelet.
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As far as the practice selection of the cutoff scales j1 and j2 is concerned, a useful heuristic is

that the regression line should cut each of the confidence intervals within it. This can be formalized

by a Chi-squared goodness of fit test [VAT03], where the critical level of the goodness of fit statistic

is monitored as a function of the endpoints of the alignment range. At least in the case of the lower

scale, this can make a very clear and relatively objective choice of cutoff possible. Applying this

test to the LDs of Figure 3.1 and Figure 3.2, we observed alignment over scales (j1, j2) = (3, 15)

and (j1, j2) = (4, 17), respectively.

3.2.8 Analytic elements of the Abry-Veitch estimator

Linear regressions

First, some standard results on one-dimensional weighted linear regressions of the random variables

yj on j ∈ [j1, j2] will be recalled. The hypothesis of linear regression is

E{yj} = bj + a (3.13)

where b and a are real constants. Now we define

S =
∑

1/σ2
j (3.14)

Sj =
∑

j/σ2
j (3.15)

Sjj =
∑

j2/σ2
j (3.16)

where σ2
j is a weight associated with yj . The usual unbiased estimator (̂b, â) of (b, a) is therefore

b̂ =

∑
yj(Sj − Sj)/σ2

j

SSjj − S2
j

=
∑

wj yj (3.17)

â =

∑
yj(Sjj − Sjj)/σ2

j

SSjj − S2
j

=
∑

vj yj (3.18)

where the weights wj and vj satisfy ∑
wj =

∑
j vj = 0∑

j wj =
∑

vj = 1

Furthermore, setting

σ2
j = V ar{yj} (3.19)

(i.e., relating the weights to the variances of the yj) then it can be shown that (̂b, â) is the Minimum

Variance Unbiased Estimator (MVUE) [VA99].

The yj statistic

In our model, log2(µ̂j) is the variable yj of the desired linear regression satisfying E{yj} = bj + a.

Since

E{log2(µ̂j)} 6= log2(E{µ̂j}) = jα+ log2(cfC) (3.20)
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this condition is not exactly satisfied, however. Therefore, small corrective deterministic factors gj ,

discussed below, are introduced and redefine the yj as

yj = log2(µ̂j)− gj (3.21)

so that by the new definition it holds

E{yj} = jα+ log2(cfC) (3.22)

Now we assume that the following idealizations hold true [AFTV00].

Idealization 1. The processes dX(j, k) are Gaussian for each fixed j.

Idealization 2. For each fixed j, the processes dX(j, k) are stationary sequences of i.i.d. random

variables.

Idealization 3. The processes dX(j, k) and dX(j′, k), j 6= j′ are independent.

Idealizations 2 and 3 are both justified by property P2 LRD, while 1 is justified by numerical

evidence. The idealizations may appear very restrictive at first. However, the method is based on

properties P1 LRD and P2 LRD, and the idealizations only make easier the quantitative the

analysis. Under the three idealizations, it can be shown [VA99] that gj is a negative, increasing

function of nj only, given by

gj = ψ(nj/2)/ ln 2− log2(nj/2) (3.23)

where ψ(x) = Γ′(x)/Γ(x) is the Psi function and Γ(x) is the Gamma function.

The idealizations also cause the yj to be scaled and shifted logarithms of Chi-squared variables

with variance

σ2
j = ζ(2, nj/2)/ ln2 2 (3.24)

where ζ(z, v) is the generalized Riemann Zeta function.

Finally, under the same idealizations and also assuming nj is “large enough”, it can be established

that

gj → log2 e

nj
(3.25)

σ2
j → 2 log2

2 e

nj
(3.26)

yj =d N

(
jα+ log2(cfC),

2 log2
2 e

nj

)
(3.27)

where N(µ, σ2) is a Gaussian random variable with mean µ and variance σ2. Therefore, yj =

log2 µj is asymptotically normally distributed and α̂, which consists of a sum of approximately

Gaussian variables, can be considered as approximately Gaussian distributed. Confidence intervals

are computed for yj and α̂ assuming these normal distributions.
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Definition of the joint estimator

The LRD estimator (α̂, ĉf ) and another, related estimator (α̂, ĉfC) are defined as follows. The

quantity ĉfC is of interest because, like α̂, its statistical properties are entirely independent of

the specific form of the mother wavelet. It is nonetheless very closely related to ĉf , yet has the

advantage of being amenable to a detailed analysis. The study of ĉf is rendered far more complex

because of the wavelet dependence, which enters explicitly via the integral (3.8).

Skipping the mathematical details discussed in [VA99], the joint estimator (α̂, ĉfC) is given by

α̂ = b̂ (3.28)

ĉfC = p 2ba (3.29)

where

p =
∏ Γ(nj/2) exp[ψ(nj/2)vj ]

Γ(vj + nj/2)

is a bias-correcting factor. Finally, defining the estimator Ĉ of the integral (3.8) as

Ĉ = C(α̂, ψ0) (3.30)

then we can obtain (α̂, ĉf ) as

α̂ = b̂ (3.31)

ĉf = ĉfC/Ĉ (3.32)

Here are summarized the main properties of the estimators defined above [VA99]:

- (α̂, ĉfC) is unbiased, even for data of finite size;

- Ĉ is asymptotically unbiased and efficient ;

- ĉf is asymptotically unbiased and efficient ;

- α̂ is approximately Gaussian distributed ;

- ĉfC and ĉf are approximately log-normally distributed.

Abry and Veitch also developed the MRA initialization procedure described in Section 2.4.7 for

the LogScale analysis of intrinsically discrete data, such as that provided by network traffic traces.

This procedure enhances the accuracy of the scaling estimator.

In our experiments, we will only deal with the estimation of α, but future investigations will be

dedicated to ĉf .
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Figure 3.3: FGN synthetic trace with H = 0.8 (fgn08.mat).

3.2.9 Application to FGN synthetic traces

We first apply the estimator of Equation (3.31) to four FGN synthetic traces with Hurst parameter

H = 0.5 (fgn05.mat), H = 0.7 (fgn07.mat), H = 0.8 (fgn08.mat) and H = 0.9 (fgn09.mat), and

with unit power and zero mean. As an example, in Figure 3.3 we have plotted fgn08.mat.

We use H rather than α as it is more customary in teletraffic studies; recall from Equation (1.9)

that

H =
1 + α

2
(3.33)

All traces are composed of 131072 samples and were generated using the Matlabr 7.0.1 Wavelet

Toolbox command wfbm.m. The estimations, whose results using the db1 wavelet family are sum-

marized in Table 3.1, were performed by the code developed by Patrice Abry and Darryl Veitch,

available at [VA]. Since the number of vanishing moments of chosen wavelet family influences the

analysis, some experiments were performed with higher order wavelets. The results were almost

without changes, as shown in Table 3.1 for db3.

Trace fgn05.mat fgn07.mat fgn08.mat fgn09.mat

(j1, j2) (3,15) (3,15) (3,15) (3,15)

Ĥ db1 0.510 0.706 0.805 0.904

[95%CI] db1 [0.502,0.518] [0.698,0.714] [0.797,0.813] [0.896,0.912]

Ĥ db3 0.505 0.707 0.808 0.908

[95%CI] db3 [0.497,0.513] [0.699,0.716] [0.800,0.816] [0.899,0.916]

Table 3.1: DWT-based H estimations for four FGN synthetic traces, with db1 and db3.

The tables are organized as follows: in the first row, there are the names of the synthetic traces,

while the second row contains the cutoff scales for the alignment range of the LogScale Diagram,

selected with the goodness of fit test described in Section 3.2.6. The third row shows the estimated

H values, obtained from Equations (3.31) and (3.33). Finally, in the fourth row there are the 95%
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confidence intervals for the estimations, derived under Gaussian assumptions on yj = log2(µ̂j).

The conclusion is that the estimated values are very close to the theoretical ones; this confirms the

goodness of the estimator. Furthermore, the synthetic FGN traces are free of polynomial trends, as

shown by the almost identical results obtained with db1 and db3 wavelets.

The previous results have been obtained with single traces. A more complete study has been

performed by running the FGN generator 1000 times and computing the histogram of the analysis

of the 1000 independent generations. In this case, db2 wavelet and j1 = 3, j2 = 14 have been

used. Figure 3.4 and Table 3.2 show the results. Note the approximately normal distribution of the

results. A slight bias toward a higher value of H is detected, especially in the case of high values of

H; in any case, the bias is very little and probably is caused by the fact that the scales for the linear

regression have been chosen constant for each run, contrary to the advices of Abry and Veitch, who

stress the importance of performing a detailed study of each trace. The automatic procedure has

kept us from providing such an analysis.

Traces H = 0.5 H = 0.7 H = 0.8 H = 0.9

Mean Ĥ 0.5001 0.7042 0.8055 0.9066

Std dev σ̂ 0.0039 0.0041 0.0042 0.0043

Table 3.2: DWT-based H estimations for 1000 independent runs of 131072 samples FGN synthetic traces,

with db2, j1 = 3 and j2 = 14.

3.2.10 Application to real traffic traces

As discussed in Chapter 1, the presence of LRD in traffic data of diverse types is now well accepted.

Some of the most detailed evidence comes from the Bellcore Ethernet traces described in [LTWW94].

The traces in question have become in some sense de facto standards in the field of traffic analysis.

There exists more than one Bellcore trace, but through the present work we will only consider the

BC-pAug89 and BC-OctExt traces.

The file pAug89.dat consists of one million rows in two columns, where each row corresponds

to one Ethernet frame. The first column provides the timestamp in seconds (measured from the

beginning of the trace) for the end of the frame. The second column contains the size of the frame

(in bytes). The actual traffic consists, therefore, of an alternating sequence of disjoint frames and

silent periods. Frames have a maximum and minimum size, whereas silences have a minimum but

not maximum duration. Since silences are not restricted to multiples of bytes (that is, time is not

slotted), we could define the Ethernet arrival process in continuous time. We do not do this, but

consider discretized versions where the process is aggregated within a window of size δ seconds.

This simplifying procedure is common practice and was justified in [AV98]. Therefore, each sample

of our aggregated trace will correspond to the amount of bytes transported by the Ethernet network

during each segment of size δ. This produces a time series that is actually the instantaneous bitrate

carried by the network, measured at the 10 msec scale. In order to get meaningful results, δ must
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Figure 3.4: Histogram of the analysis of 1000 FGN synthetic traces of 131072 samples with H = 0.5 (top

left), H = 0.7 (top right) , H = 0.8 (top left), and H = 0.9 (bottom right). The analysis was performed

with db2 wavelet and j1 = 3, j2 = 14.

be chosen carefully. It cannot be less than the (real) accuracy of the capturing device; a good rule-

of-thumb is to choose δ at least an order of magnitude higher than the accuracy of the capture

card. On the other hand, if the resulting trace has a lot of zero samples (as is the case when δ is

very little) the capture presents non-stationarities (bursts of zeros followed by non-zero samples)

that bias the estimation. For our analysis, we chose δ = 10 msec and called the corresponding

314282-samples trace pAug8910ms.mat.

In order to avoid the bias caused by possible polynomial trends, Abry and Veitch recommend

performing several analyses with increasing numbers of vanishing moments until the results stabilize.

Applying the H estimator of Equation (3.31) to this trace and using the db1, db2 and db3 wavelet

families, one gets the results shown in Table 3.3. This confirms what was stated in [LTWW94]

and [VA99], where the pAug89 trace aggregated at 10 msec is shown to exhibit long-range depen-

dence with Hurst parameter close to 0.8. The results are almost identical for the three analyses,

thus confirming the inexistence of polynomial trends. Figure 3.2 shows the LogScale Diagram for

the db1 case, which is very similar to the diagrams for the other two wavelets.
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Wavelet Scales (j1, j2) Ĥ 95% conf. int.

db1 (4,17) 0.802 (0.795, 0.810)

db2 (4,12) 0.803 (0.795, 0.810)

db3 (4,11) 0.805 (0.797, 0.813)

Table 3.3: DWT-based H estimations for the BC-pAug89 trace aggregated at 10 ms.

We perform a similar analysis of another of the Bellcore set traces, the one known as BC-OctExt.

This trace is known to be highly variable. It corresponds to 35 hours of data coming from the out-

bound link of the Bellcore network, and includes a complete daily cycle. In this case the aggregation

is performed at the δ = 1 second scale. The long-memory and LRD properties of the trace are con-

firmed by the Hurst parameter estimation shown in Table 3.4. The results are also coherent with

those described in [VA99].

Wavelet Scales (j1, j2) Ĥ 95% conf. int.

db1 (4,17) 0.934 (0.928, 0.939)

db2 (2,11) 0.936 (0.930, 0.942)

db3 (4,8) 0.925 (0.909, 0.940)

Table 3.4: DWT-based H estimations for the OctExt1s.mat trace.

3.3 WPT-based estimation

3.3.1 WPT of LRD processes

In Equation (3.7), we expressed the variance of the DWT coefficients at scale j as a function of the

scaling parameters. Since WPT is a generalization of DWT, it makes sense now to generalize that

expression by calculating the variance of the WPT decomposition of a LRD process. The result is

exposed in the following proposition and in the subsequent proof.

Proposition 3.1. Given an ideal LRD process in which the spectrum follows exactly (not only

asymptotically) the following spectrum1,

S(f) = cf |f |−α,∀f

the variance of the WPT coefficients of such a process at scale j and subband m satisfies

µj,m = E{dX(j, k,m)2} = 2jα cfC
(m+ 1)1−α −m1−α

21−α − 1
(3.34)

1The long-range dependence property in the frequency domain is given by Equation (1.12):

S(f) ∼ cf |f |−α, f → 0
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where cf , C and α are the same quantities defined for DWT; from Equation (3.7), this can be

equivalently expressed in terms of the variance µj of the DWT coefficients as

µj,m = µj
(m+ 1)1−α −m1−α

21−α − 1
(3.35)

Proof. The power of subband m at scale j can then be calculated as

Pj,m =
∫ (m+1) 2−j

m 2−j

S(f) df =
cf

1− α
2−j(1−α) [(m+ 1)1−α −m1−α]

The variance of the WPT coefficients can now be written as

µj,m = Pj,m 2j = 2jα cf
1− α

[(m+ 1)1−α −m1−α]

Setting m = 1 in the last equation, we obtain the DWT case:

µj,1 = µj = 2jα cf
1− α

(21−α − 1)

Moreover, from Equation (3.7) we know that in the DWT decomposition it holds

µj = 2jα cfC

Putting the above equations together, we finally obtain

µj,m = 2jα cf
1− α

[(m+ 1)1−α −m1−α]

= 2jα cf
1− α

(21−α − 1)
(m+ 1)1−α −m1−α

21−α − 1

= 2jα cfC
(m+ 1)1−α −m1−α

21−α − 1

= µj
(m+ 1)1−α −m1−α

21−α − 1

which is the desired result.

If we wanted to extend this proposition to a general LRD process whose spectrum follows

Equation (1.12), an extra additive term A(f) should be included in expression (3.35) in order to

include the bias caused by the asymptotical behavior.

3.3.2 The Wavelet Packet variance map

In Section 2.5, we have seen how the WPT can be obtained by a generalization of the DWT. In the

same way, we can now extend the DWT-related analysis tools discussed in Section 3.2 to the WPT

environment. In order to achieve this purpose, we will assume that the same idealizations about

the wavelet coefficients (i.e., their Gaussianity, stationarity and independence) hold true.

By analogy with Equation (3.10) and Equation (3.21), we firstly define the following quantities:

µ̂j,m =
1
nj

nj∑
k=1

dX(j, k,m)2 (3.36)

yj,m = log2(µ̂j,m)− gj,m (3.37)
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where gj,m is the the generalization of the corrective term gj defined in Equation 3.23. Since gj

depends only on nj , the number of wavelet coefficients at scale j, we assume gj,m to be dependent

on nj,m, the number of wavelet coefficients at scale j and subband m.

It is evident that the three-dimensional plot of yj,m against j and m is a generalization of

the LogScale Diagram yj defined in Section 3.2.6, in the sense that the correspondent LD can be

obtained by “slicing” it by the m = 1 plane:

yj = yj,(m=1) (3.38)

We call this plot the Wavelet Packet variance map [RS04b]. Examples of WP variance maps are

given in Figure 3.5 and Figure 3.6. The first plot is for the 131072-samples FGN synthetic trace

with Hurst parameter H = 0.8 discussed in Section 3.2.9 (fgn08.mat), while the second is for

the BC-pAug89 Bellcore trace aggregated at δ = 10 msec (pAug8910ms.mat), described in Section

3.2.10. In both cases, the WPT decomposition was performed using the db1 wavelet.

3.3.3 Analytic elements: the WPT-based estimator

We now discuss how the WP variance map can be used for the Hurst parameter estimation. Putting

together Equation (3.37) and the logarithms of both members of Equation (3.35), we obtain

E{yj,m} = log2(µj) + log2

[
(m+ 1)1−α −m1−α]

21−α − 1

]
= jα+ log2(cfC) + log2

[
(m+ 1)1−α −m1−α]

21−α − 1

]
This relation suggests that it is possible to estimate α (or, equivalently, H) in different ways:

- via a global estimation, by performing a weighted curve fitting (the generalization of the

weighted linear regression) across j and m.

- via a partial estimation with a fixed m, by setting m and performing a weighted linear regres-

sion across j, being m = 1 the DWT case;

- via a partial estimation with a fixed j, by setting j and performing a weighted linear regression

across m;

- via a partial estimation with a general choice of subbands and decomposition levels.

Regarding the weights, we apply the same reasoning presented in [AV98] and make them equal

to the inverse of the variance of the yj . For our experiments (reported in the subsequent two

paragraphs) we will perform:

- a weighted linear regression for the partial estimation, via the polyfit3 Matlab function;

- a least square curve fitting for the global and general estimations. Unfortunately, we found no

weighted curve fitting for Matlab, and we could only implement a weightless version of our

algorithm. As we will see, this affects our estimator with some bias for the higher values of H.
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Figure 3.5: Wavelet Packet variance map for the fgn08.mat synthetic trace, using db1 wavelet, for J = 6.

Figure 3.6: Wavelet Packet variance map for the BC-pAug89 Bellcore trace aggregated at δ = 10 msec,

using db1 wavelet, for J = 6.
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Figure 3.7: Histogram of the H estimation of 1000 independent realizations of FGN (H = 0.5), with db1,

for J = 10.

Figure 3.8: Histogram of the H estimation of 1000 independent realizations of FGN (H = 0.9), with db1,

for J = 10.
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3.3.4 Application to synthetic FGN traces

We now apply the two WPT-based estimators (partial and global) to the FGN synthetic traces

fgn05.mat, fgn07.mat, fgn08.mat and fgn09.mat discussed in Section 3.2.9. The corresponding

results are summarized in Table 3.5. The total number of available scales was J = 10 (due to

the computational complexity involved), while the chosen wavelet family was the db1. Since the

dependence on the wavelet was already studied for the DWT-based LogScale Diagram, finding

almost the same results, we will only present here the Haar wavelet.

Trace fgn05.mat fgn07.mat fgn08.mat fgn09.mat

Partial (m = 0) bH = 0.4991 bH = 0.6993 bH = 0.7995 bH = 0.8997

Partial (m = 1) bH = 0.5029 bH = 0.7034 bH = 0.8036 bH = 0.9039

Partial (m = 2) bH = 0.4954 bH = 0.6948 bH = 0.7946 bH = 0.8944

Partial (m = 3) bH = 0.5035 bH = 0.7037 bH = 0.8038 bH = 0.9040

Partial (m = 4) bH = 0.5022 bH = 0.7028 bH = 0.8031 bH = 0.9034

Partial (m = 5) bH = 0.4918 bH = 0.6910 bH = 0.7906 bH = 0.8902

Partial (m = 6) bH = 0.4989 bH = 0.6988 bH = 0.7990 bH = 0.8993

Partial (m = 7) bH = 0.5032 bH = 0.7026 bH = 0.8024 bH = 0.9021

Partial (m = 8) bH = 0.5034 bH = 0.7045 bH = 0.8050 bH = 0.9057

Partial (m = 9) bH = 0.5063 bH = 0.7086 bH = 0.8097 bH = 0.9108

Global (j, m) bH = 0.4991 bH = 0.6968 bH = 0.7826 bH = 0.8434

Table 3.5: WPT-based H estimations for four FGN synthetic traces.

Looking at the table, we can see that the partial estimations give very good results for all

traces, though accuracy decreases when m grows. As far as the global estimations are concerned,

their precision seems to decrease as H takes values close to one, due to the bias introduced by the

weightless curve fitting. The higher scales (whose sample variance estimation is very unreliable)

bias the estimation.

The data presented in the previous paragraph, though valid, is not necessarily statistically

meaningful. That is why we performed the same analysis with 1000 independent FGN realizations

of 131072 samples for each value of H, using db1 wavelet at J = 10. We will present only the

results for H = 0.5 and H = 0.9, since those obtained for H = 0.7 and H = 0.8 fall between them.

Figures 3.7 and 3.8 show the histograms of the obtained estimations of H for some of the partial

decompositions and the global estimation, while Table 3.6 provides the mean and the variance of

the estimations.

H=0.5 H=0.7 H=0.8 H=0.9

Mean bH Std dev bσ Mean bH Std dev bσ Mean bH Std dev bσ Mean bH Std dev bσ

Partial (m = 0) 0.4998 0.0030 0.6964 0.0031 0.7962 0.0031 0.8963 0.0031

Partial (m = 1) 0.4999 0.0043 0.6971 0.0045 0.7970 0.0044 0.8973 0.0043

Partial (m = 2) 0.4998 0.0045 0.6955 0.0044 0.7951 0.0045 0.8951 0.0046

Partial (m = 6) 0.4995 0.0063 0.6948 0.0062 0.7942 0.0063 0.8942 0.0064

Partial (m = 9) 0.4999 0.0093 0.6967 0.0089 0.7966 0.0088 0.8963 0.0090

Global (j, m) 0.5005 0.0071 0.6991 0.0079 0.7796 0.0068 0.8192 0.0110

Table 3.6: WPT-based estimations for 1000 independent realizations of FGN.
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The conclusions about the mean values of H are the same as those already explained for the

individual traces: the partial estimations are quite accurate, even for m = 9. The histograms and

the standard deviation show that the higher the m, the more dispersed the results, as is expected

due to the lower number of subbands used in the estimation. For the global estimator, the mean H

suffers from the bias phenomenon already mentioned in the analysis of isolated traces. Regarding

its variance, it is comparable to that of the partial estimations with higher m. Comparing the

results with those obtained with the DWT and shown in Table 3.2, and regarding the dispersion

of the partial estimates, WPT performs better for m = 0, equal for m = 1 (what is not surprising,

since the m = 1 case is exactly the DWT, and only slightly worse for the higher values of m. This

validates our algorithm and opens the way for the development of a fast, non-orthogonal, incomplete

subband, but still accurate estimators of the scaling parameter, for example by using the m = 6

decomposition.

3.3.5 Application to the Bellcore traces

Performing the WPT-based estimation on the BC-pAug89 trace described in Section 3.2.10, we

obtained the results summarized in Table 3.7. As in the previous paragraph, we used the db1

wavelet family and set J = 10.

Partial Global

m 0 1 2 3 4 5 6 7 8 9 j, m

bH 0.7735 0.7871 0.8458 0.6650 0.7748 0.8407 0.8513 0.6202 0.7112 0.7549 0.8154

Table 3.7: WPT-based H estimations for the BC-pAug89 trace aggregated at δ = 10 ms.

Since we expected an estimated H value close to 0.8, results are not very good for the partial

estimators (0.6650 < H < 0.8513), but the problem does not come from the analysis method, that

has been validated previously. Somehow, the different choice of subbands for each estimation is

telling us that this trace is not as easy to characterize as the FGNs studied previously. As we will

see in Chapter 5, the problem comes from the nonstationarity of the scaling parameters, which

makes the variances at each scale to change continuously. The global estimator, on the other hand,

still returns a Hurst parameter which is close to the mean value of 0.8.

Regarding the BC-OctExt trace, the estimations of H are shown in Table 3.8. The conclusions

are similar to the ones already found for the other trace: the variation range found in the partial

estimations (0.9008 < H < 0.9468) is an evidence of the non-stationarity of H. The global estimator,

on the other hand, suffers from the same phenomenon already detected in Section 3.3.4 for the

H = 0.9 FGN traces, in which the estimation was biased to a lower value.

Partial Global

m 0 1 2 3 4 5 6 7 8 9 j, m

bH 0.9432 0.9289 0.9008 0.9142 0.9468 0.9167 0.9232 0.9017 0.9239 0.9338 0.8593

Table 3.8: WPT-based H estimations for the BC-OctExt trace aggregated at δ = 1 s.
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3.4 Summary of the chapter

This chapter has reviewed the properties of the DWT-based estimator of the fractal parameters

of network traffic, developed by Abry and Veitch and based on the LogScale Diagram. The key is

the analysis of variance (ANOVA) performed by the wavelet transform, which turns the power-law

spectral density of self-similar and LRD processes into a straight line when represented in a log-log

diagram, making it much easier to estimate.

Being our aim the development of an algorithm to track the evolution of the scaling parame-

ters of traffic, we turned our attention towards alternative wavelet transforms capable of adapting

themselves to changing conditions. The wavelet packet transform (WPT) is the first such transform.

We have developed a WPT-based estimator, built on a graphic tool called the Wavelet Packet

variance map [RS04b, RS04a]. Our intention was to use jointly the real-time splitting algorithm

mentioned in 2.5.3, capable of performing a progressive orthogonal tiling, which would update the

best basis for the WPT decomposition as the traffic process evolves, and then perform the WPT

estimation at the basis change points [VA99]. We found some problems and later abandoned the idea

and turned our attention towards the variance change detection techniques described in Chapter 4.

However, the WPT can stand by itself as a contribution, and provides several modes of estimating

the scaling parameter of processes. Our WPT-based algorithm provides both partial (in the sense

of limited to DWT-style decompositions with fixed m) and global (for all values of j and m)

estimations. We have shown that the estimator can actually work with any combination of subbands,

though its accuracy is limited by the lack of implementation of a weighted curve-fitting algorithm.

Finally, our WPT-based analysis applied to the Bellcore traces has shown clear evidences of the

non-stationarity of their scaling parameters.

The WPT partial estimator paves the way for fast, though not so accurate estimators. In the un-

complete frequency decompositions the number of available samples for the regression is lower, and

this speeds the process. Despite their lack of accuracy, these estimations could be useful in certain

time-critical situations (where the speed of the estimation is more important than its precision),

due to their less intensive computational load. This is a topic for future research.
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Chapter 4

Variance change detection

methods

4.1 Introduction

Our aim is to develop wavelet-based methods capable of tracking the variance structure of network

traffic processes and detecting their changes, thus segmenting traffic into regions with homogeneous

behavior. We approach the problem by decomposing the original process in a multiresolution anal-

ysis via the wavelet transforms described in Chapter 2, and then applying a variance change points

algorithm to each one of the scales in which the signal is decomposed. From all the algorithms that

can be found in the statistical literature, we have selected the following two:

- The Iterated Cumulative Sum of Squares (ICSS), described in Section 4.3.

- The Schwarz Information Criterion (SIC), presented in Section 4.4.

The ICSS consists of computing the cumulative sum of squares of the samples and comparing it

with the result provided by an ideal variance-homogeneous sequence. It is a well-known technique,

but lacks flexibility in the selection of the significance level α of the estimation (critical values cα
are computed using Monte Carlo simulation), and it is difficult to build a real-time implementation.

The Schwarz Information Criterion (SIC), based on information theory concepts, is a more powerful

approach. The intuition behind SIC is that a sequence with a variance change point has higher

entropy (disorder) than a sequence with constant variance. The SIC formalism includes an analytic

expression for the critical value cα.

This chapter begins with the statement of the variance change detection problem, together with

an auxiliary technique known as the Binary Segmentation procedure. The chapter follows with the

description of the ICSS and SIC methods, including examples of how they work and an empirical

assessment of their statistical power.

99
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4.2 Statement of the variance change detection problem

Let x1, x2, . . . , xN be a sequence of independent normal random variables with parameters (η1, σ2
1),

(η2, σ2
2),. . ., (ηN , σ2

N ). Assume that η1 = η2 = . . . = ηN = η and that η is known. The general

formulation of the problem consists of testing the null hypothesis H0

σ2
1 = σ2

2 = . . . = σ2
N = σ2 (4.1)

versus the alternative H1

σ2
1 = . . . = σ2

k1
6= σ2

k1+1 = . . . = σ2
k2
6= . . . 6= σ2

kq+1 = . . . = σ2
N

where q is the unknown number of change points and 1 < k1 < k2 < . . . < kq < N , ki ∈ N are the

unknown positions of the change points.

4.2.1 Binary segmentation procedure

Finding simultaneously the quantity and the position of multiple change points is a challenging

problem. There is a method, known as binary segmentation, which simplifies the problem. Based

on the same principle as the iterative procedure proposed for the ICSS (see Section 4.3), the binary

segmentation can be described as follows:

1) look for a single change point in the whole sequence.

2) if there is no change, stop the algorithm.

3) if there is a change, then this change point divides the original sequence into two subsequences.

4) for each subsequence, detect a change point, as in the first step, and continue the process

until no more changes are found in any of the subsequences.

From the above discussion, it should be clear that in order to use the binary segmentation, we only

have to decide between two hypotheses:

- no change point is detected.

- a single change point is detected.

Thanks to the binary segmentation procedure, we can redefine the problem stated in Section

4.2 as testing H0 against the following alternative H1:

σ2
1 = . . . = σ2

k0
6= σ2

k0+1 = . . . = σ2
N (4.2)

where 1 < k0 < N is the (unknown) position of the change point.

The single change point detection problem is far easier to solve, as is shown in the following

sections for the ICSS and SIC cases.
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4.3 The ICSS algorithm

We now discuss a procedure for the variance changes detection called Iterated Cumulative Sum

of Squares (ICSS) [IT94]. Introduced in the context of financial series, it studies the detection of

multiple changes of variance in a sequence of independent observations. The algorithm uses centered

and normalized cumulative sums of squares to search for change points systematically at different

pieces of the signal to be analyzed (in our case, the series of the wavelet detail coefficients at a given

scale j).

4.3.1 The cumulative sum of squares (CSS) statistic

Expressing the above in a formal manner, let xk be a series of k = 1 . . . N independent random

variables with zero mean and variances σ2
k, k = 1, . . . , N . The cumulative sum of squares (CSS)

statistic Dk is defined as

Dk =

∣∣∣∣∣
∑k

i=1 x
2
i∑N

i=1 x
2
i

− k

N

∣∣∣∣∣ , k = 1, . . . , N (4.3)

so that, by definition, it holds DN = 0. Furthermore, we assume D0 = 0.

The plot of Dk against k will oscillate around zero for series with homogeneous variance. When

there is a sudden change in variance, the slope of Dk suffers a drastic change, creating either a

peak or a valley, according to whether the variance changes to a smaller or greater value. Some

boundaries for Dk have to be defined for the statistic in order to detect the real change points; i.e.,

we have to define some critical level in order to distinguish between random oscillations (for peaks

under the critical level) and real variance changes (peaks greater than the critical value).

Under constant variance, the normalized statistic
√
N/2Dk behaves asymptotically like a Brow-

nian bridge (see Definition 4.1), for which a table with the associated critical levels D∗ can be

found in [IT94]. The table is expressed in terms of the probability p of misclassifying a real change

point as a negligible variation. For example, the critical value of
√
N/2|Dk| for a maximum error

of 1− p = 0.95 is D∗ = 1.358.

Definition 4.1. Given a Brownian motion process W(t), with E[W (t)] = 0 and E[W (t)W (s)] =

s, 0 ≤ s < t, a Brownian bridge W 0(t) is defined as follows:

W 0(t) = W (t)− tW (1) 0 ≤ t ≤ 1

for which E[W 0(t)] = 0, E[W 0(t)W 0(s)] = s(1− t) for 0 ≤ s < t, and W 0(0) = W 0(1) = 0.

4.3.2 Multiple change point detection with the ICSS

With the aforementioned statistic and its associated critical values we can meaningfully detect a

single variance change in a time series. If one is looking for multiple variance changes, as is our

case, one can perform a binary segmentation procedure. But the authors of [IT94] warned about the
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masking effect of the CSS statistic, that may cause some true change points to be missed, and also

detect some untrue changes. That is why Inclán and Tiao propose a heuristic, systematic procedure

derived from the binary segmentation that iteratively re-evaluates each change point candidate.

This is called the Iterated CSS (ICSS).

Let x[k1 : k2] denote the subseries xk1 , xk1+1 . . . xk2 , and let Dk(x[k1 : k2]) denote the CSS

statistic computed on the x[k1 : k2] subseries, for ki ∈ N. Then, the iterated version of the algorithm

is defined as follows:

Step 0: Let k1 = 1.

Step 1: Compute Dk(x[k1 : N ]), and take k∗ as the point where maxk |Dk(x[k1 : N ])| is attained.

Step 2: Compute the statistic M(k1 : N) = maxk1≤k≤N (
√

(N − k1 + 1)/2|Dk(x[k1 : N ])|). If

M(k1 : N) > D∗, consider that k∗ is a change point and continue with Step 3a; if not,

there is no evidence of a variance change in the series and the algorithm stops.

Step 3a: Let k2 = k∗. Compute Dk(x[k1 : k2]), the CSS applied to the subseries x[k1 : k2]. If

M(k1 : k2) > D∗, a new change point is found. Repeat Step 3a until M(k1 : k2) < D∗,

and therefore no evidence of change in k1 . . . k2 is found, and the first candidate change

point is kfirst = k2.

Step 3b: Perform a similar procedure starting from the first changepoint found in Step 1, and

advance towards the end of the series. Redefine k1 = k∗+1. Compute Dk(x[k1 : N ]) and

repeat Step 3b until M(k1 : N) < D∗. Then, define the last candidate change point as

klast = k1 − 1.

Step 3c: If the first and last candidates coincide, kfirst = klast, there is just one change point

in the series, and the algorithm stops. If kfirst < klast, keep both values as change point

candidates, and repeat Steps 1, 2 and 3 in the subseries defined by kfirst and klast; that

is, k1 = kfirst + 1 and N = klast. Each time Steps 3a and 3b are performed, the result

can be one or two more candidate change points.

Step 4: Let JN be the number of change point candidates found, and reorder them in a vector, cp

in increasing order. Add the two extreme values cp0 = 0 and cpJN+1 = N . Re-evaluate each

one of the JN change candidates by computing Dk(x[cpj−1 + 1 : cpj+1]), j = 1 . . . JN . If

M(cpj−1 + 1 : cpj+1) < D∗, discard the change point candidate; otherwise, keep it.

Step 5: Repeat Step 4 until the number of change points does not change, and the points found in

each iteration are close to those on the last pass. Then, the algorithm has converged.

Figure 4.1 illustrates the complete ICSS procedure for a signal composed of 3 segments of 1024

samples of Gaussian white noise (actually, FGN with H = 0.5) with variances 1, 2 and 1, and a

total length of 3072 samples. The analysis is performed at the 95% significance level, with a shift

tolerance (for Step 5) of 1 sample. The signal is shown in a). The first step of the procedure is the

computation of the CSS statistic for the whole sequence (1 : 3072), shown (in absolute value) in b)
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together with the normalized critical value 1.358√
N/2

. The CSS attains its maximum at k = 1053 and

exceeds the critical value, thus signalling the presence of a change candidate. Then, the CSS for

subseries (1 : 1053) is analyzed (shown in c), finding that the maximum does not exceed the critical

value, and therefore determining kfirst = 1053. d) shows the CSS statistic for the (1054 : 3072)

subseries, with a maximum at k = 2048 that exceeds the critical value. The CSS for the (2049 : 3072)

subseries is analyzed in e), with no change points. Therefore, klast = 2048. Once both extremes have

been found, we study the center of the sequence. f) shows the CSS statistic for the (1054 : 2048)

subseries, with no change candidate. At this point we have 2 candidate change points at positions

k1 = 1053, k2 = 2048. We re-evaluate them (Step 4) by computing the CSS statistic for subseries

(1− 2048) for k1 and (1054− 3072) for k2, as shown in g) and h), finding that k2 is confirmed with

no change in its positions, and that k1 changes to 1081. Since the absolute maximum deviation

of k1 exceeds the shift tolerance, the algorithm performs another iteration where the segments

1− 2048 and 1082− 3072 are re-evaluated, returning change candidates at positions k1 = 1081 and

k2 = 2048. The algorithm has converged and stops.

4.3.3 Complexity

Due to its dependence on the actual number of change points, which in turn forces the algorithm to

perform more or fewer iterations, it is not easy to analyze the computational complexity of the ICSS

statistic. We have developed a fast implementation for Matlab that computes the cumulative sum

of squares just once, at the beginning of the procedure. The CSS of the subseries is derived from

this first computation just by a substraction and a normalization, making the whole procedure very

light in computational terms. From our empirical experience, we hypothesize that the complexity

of the algorithm is on the order of the quantity of samples; i.e, O(N).

4.3.4 Empirical assessment of the power of the ICSS algorithm

We now present a simple, empirical approach for assessing the power of the ICSS procedure. It con-

sists of generating 1000 independent realizations of uncorrelated white gaussian noise (WGN) with

a variance change point in the middle of the series, for different ratios of variance: 1.2, 1.3, 1.4, 1.5,

1.75, 2, 3, and 4. These values are of the order of the changes we will see in traffic traces. Each WGN

trace has a length of 2000 samples, with the true change point at position 1001. The analyses have

been performed at the 95% and 99% significance levels.

The results are shown in Figures 4.2 and 4.3, with the histograms of the detected change points,

and Tables 4.1 and 4.2, with the mean and the standard deviation of the change points. The tables

also show the amount of “good” change points found in the range of ±10 positions of the true

change (positions 990 − 1010, corresponding to the variation of the true location of ±0.5% of the

series length), and the total quantity of detected change points.

The results highlight the influence of the variance ratio in the change detection. For variance

ratios under 1.5, less than half of the changes are detected. Another interesting result is the positive
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Figure 4.1: The ICSS algorithm applied to 3 segments of 1024 samples of uncorrelated Gaussian white

noise (FGN with H = 0.5) with variances 1, 2 and 1. The normalized critical value 1.358√
N/2

is shown as a red

line.
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bias introduced by the lower variance ratios in the change location. This makes the change to be

detected a posteriori ; i.e, some positions after the true change point, as if the change needed some

more samples to become evident, slightly delaying the detection of the change points. The dispersion

due to the false change points is also very dependent on the variance ratio; the higher the change,

the lower the variance and the better localized the change is. Regarding the significance level, the

results obtained with 95% tend to detect more false changes (around 100), while with 99% a lower

amount is found (around 20).

Variance ratio Change points ±10 positions Mean Std. deviation

1.2 1072 206 (19.3%) 1023.0 213.2

1.3 1077 349 (32.4%) 1021.8 170.2

1.4 1106 438 (39.6%) 1023.9 177.1

1.5 1094 521 (47.6%) 1014.1 157.3

1.75 1100 682 (62.0%) 1016.0 158.6

2 1092 754 (69.0%) 1001.5 157.2

3 1095 872 (79.6%) 1002.6 157.2

4 1114 929 (83.4%) 996.4 168.2

Table 4.1: Results for the detected change points with the ICSS at the 95% significance level.

Variance ratio Change points ±10 positions Mean Std. deviation

1.2 454 12 (2.6%) 1034.8 202.2

1.3 1016 330 (32.5%) 1025.8 117.3

1.4 1011 424 (41.2%) 1022.9 92.4

1.5 1016 508 (19.3%) 1019.3 89.0

1.75 1021 681 (66.7%) 1017.0 76.2

2 1021 794 (77.8%) 1011.1 76.1

3 1020 888 (87.1%) 1004.0 68.2

4 1025 935 (91.2%) 1004.5 76.9

Table 4.2: Results for the detected change points with the ICSS at the 99% significance level.

As an illustration of the effect of a correlated signal in the performance of the ICSS statistic, we

present in Figure 4.4 a similar analysis, with an FGN signal whose Hurst parameter is H = 0.9, thus

indicating strong long-range dependence and correlation. The analysis has been performed only for

the extreme values of the variance ratio (1.2 and 4), for the two significance levels (95% and 99%).

From the histograms it is obvious that a huge quantity of false change points are detected, though it

does not depend on the variance ratio. Besides, the false points appear more or less uniformly along

the whole trace. For the true points, the detection algorithm performs worse than the uncorrelated

input case; i.e., less true changes are detected. What is interesting is the role of the significance

level in the quantity of false changes: the higher the significance level, the fewer the false changes.
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Figure 4.2: Histograms of detected change points with the ICSS at the 95% significance level, for the

variance ratios: a 1.2, b 1.3, c 1.4, d 1.5, e 1.75, f 2, g 3, and h 4.
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Figure 4.3: Histograms of detected change points with the ICSS at the 99% significance level, for the

variance ratios: a 1.2, b 1.3, c 1.4, d 1.5, e 1.75, f 2, g 3, and h 4.
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Figure 4.4: Histograms of detected change points with the ICSS on a FGN signal with H = 0.9. From

top to bottom, left to right: variance ratio 1.2 at the 95% significance level, variance ratio 4 at the 95%

significance level, variance ratio 1.2 at the 99% significance level, and variance ratio 4 at the 95% significance

level.

4.4 The Schwarz Information Criterion (SIC)

After having analyzed in Section 4.3 the ICSS algorithm, we now discuss another procedure for the

variance changes detection, based on the Schwarz Information Criterion (SIC) [CG97]. Introduced

in the context of stock price analysis, it studies the problem of multiple variance change points by

applying an information theoretic approach.

4.4.1 Information criterion under the Gaussian model

The use of information theory criteria for selecting a model that fits the analyzed data was intro-

duced by Akaike [Aka73], who developed the Bayesian Information Criterion (BIC) and the Akaike

Information Criterion (AIC), both widely used in statistical analysis. The statistic that will allow us

to decide whether a change point exists or not is the Schwarz Information Criterion (SIC) [CG97],

whose general definition is

SIC(k) = −2 logL(θ̂) + p logN, 1 < k < N (4.4)

where L(θ̂) is the maximum of the likelihood function for the model (containing the dependence

from k), p is the number of free parameters in the model and N is the sample size.

In the following proposition, we derive the expressions for the SIC statistic in the Gaussian case,

under the two hypotheses H0 (no change is present) and H1 (a single change is present).
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Proposition 4.1. Assuming a Gaussian distribution for the data, the expression of the SIC statistic

under the null hypothesis H0 is given by

SIC(N) = N log 2π +N log σ̂2 +N + logN (4.5)

where

σ̂2 =
1
N

N∑
i=1

(xi − η)2

while under the alternative hypothesis H1 it holds

SIC(k) = N log 2π + k log σ̂1
2 + (N − k) log σ̂2

2 +N + 2 logN, 1 < k < N (4.6)

where

σ̂1
2 =

1
k

k∑
i=1

(xi − η)2

σ̂2
2 =

1
N − k

N∑
i=k+1

(xi − η)2

Proof. Starting from the H0 case (which corresponds to p = 1), the expression for the SIC

statistic is given by

SIC(N) = −2 logL(σ̂2) + logN

Since in this case the sequence xi, i = 1, . . . , N does not possess any change point, the SIC statistic

only depends on N . For this reason, we have written SIC(N) instead of SIC(k). As the data follow

a Gaussian distribution, that is

xi =d N(η, σ2), i = 1, . . . , N

the probability density function (pdf) for the ith sample is given by

f(xi;σ2) =
1√

2πσ2
exp

[
− (xi − η)2

2σ2

]
The random variables xi, i = 1, . . . , N are independent by hypothesis, therefore the joint pdf for the

whole data set x = [x1, x2, . . . , xN ] (that is, the likelihood function for the model) can be written

as

f(x ;σ2) = L(σ2) =
N∏

i=1

f(xi;σ2) = (2πσ2)−N/2 exp

[
− 1

2σ2

N∑
i=1

(xi − η)2
]

The Maximum Likelihood Estimator (MLE) [SW86] of the quantity σ2 is then given by

σ̂2 = arg max
σ2

L(σ2) = arg max
σ2

logL(σ2)

Since it holds

logL(σ2) = −N
2

log(2πσ2)− 1
2σ2

N∑
i=1

(xi − η)2
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in order to find σ̂2, we have to solve the equation

∂ logL(σ2)
∂σ2

=
N

2σ4

[
1
N

N∑
i=1

(xi − η)2 − σ2

]
= 0

The result is trivially

σ̂2 =
1
N

N∑
i=1

(xi − η)2

Substituting it into the SIC(N) expression finally yields

SIC(N) = −2 logL(σ̂2) + logN = −2
[
−N

2
log(2πσ̂2)− N

2

]
+ logN

= N log(2π) +N log σ̂2 +N + logN

As far as the H1 case (corresponding to p = 2) is concerned, the expression for the SIC statistic is

given by

SIC(k) = −2 logL(σ̂1
2, σ̂2

2) + 2 logN, 1 < k < N

The data distribution now is

xi =d

{
N(η, σ2

1) i = 1, . . . , k

N(η, σ2
2) i = k + 1, . . . , N

so that the pdf for the ith sample is

f(xi;σ2
1 , σ

2
2) =

{
(2πσ2

1)−1/2 exp
[
−(xi − η)2/(2σ2

1)
]

i = 1, . . . , k

(2πσ2
2)−1/2 exp

[
−(xi − η)2/(2σ2

2)
]

i = k + 1, . . . , N

Given the independence of the random variables xi, i = 1, . . . , N we can write the likelihood function

for the model as

f(x ;σ2
1 , σ

2
2) = L(σ2

1 , σ
2
2) =

N∏
i=1

f(xi;σ2
1 , σ

2
2)

= (2πσ2
1)−k/2(2πσ2

2)−(N−k)/2 ·

· exp

[
− 1

2σ2
1

k∑
i=1

(xi − η)2 − 1
2σ2

2

N∑
i=k+1

(xi − η)2
]

Performing calculations similar to those done in the H0 case, for the ML estimators of the quantities

σ2
1 and σ2

2 it holds

σ̂1
2 = arg max

σ2
1

L(σ2
1 , σ

2
2) =

1
k

k∑
i=1

(xi − η)2

σ̂2
2 = arg max

σ2
2

L(σ2
1 , σ

2
2) =

1
N − k

N∑
i=k+1

(xi − η)2

Substituting the above expressions into the SIC(k) formula, we finally obtain

SIC(k) = −2 logL(σ̂1
2, σ̂2

2) + 2 logN

= −2
[
−k

2
log(2πσ̂1

2)− N − k

2
log(2πσ̂2

2)− k

2
− N − k

2

]
+ 2 logN

= N log(2π) + k log σ̂1
2 + (N − k) log σ̂2

2 +N + 2 logN, 1 < k < N
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which is the desired result.

4.4.2 The minimum information criterion

The decision to accept H0 or H1, based on the principle of minimum information criterion, is taken

as follows [CG97]:

- if SIC(N) ≤ min1<k<N SIC(k), then accept H0;

- if SIC(N) > SIC(k) for some k, then estimate the position k0 of the change point as

k̂0 = arg min
1<k<N

SIC(k) (4.7)

The intuition behind the minimum information criterion is the identification of a change in the

time series with the presence of disorder, which in information theory terms is entropy. What we are

doing is computing the entropy of the whole sequence (1 : N), and the entropy of all the possible

subsequences (1 : k) and (k + 1 : N). If no change point is present, the entropy of the whole trace

is similar to the entropy of the subsequences; but if a variance change point is present at position

k, then the entropy of the whole trace is higher than the entropy of both subsequences (1 : k) and

(k + 1 : N), and the k that maximizes the difference in entropies is the change position candidate.

4.4.3 Significance level under the Gaussian model

When the SIC values are very close, one may question whether the small differences among them

are caused by the fluctuation of the data or by a real change. In order to make the results about

the change points statistically convincing, a significance level α > 0 and its associated critical value

cα ≥ 0 are introduced. Instead of accepting H0 when SIC(N) ≤ min1<k<N SIC(k), we do it if

SIC(N) ≤ min1<k<N SIC(k) + cα. If, on the contrary, H0 is rejected, then Equation (4.7) is still

valid.

Skipping the mathematical details reported in [CG97], the relation between cα and α is given

by

1− α = Pr{SIC(N) < min
1<k<N

SIC(k) + cα|H0} (4.8)

while the critical value cα, under Gaussian assumptions, can be computed (by setting the sig-

nificance level α) as follows:

cα =
{
− 1
a(N)

log log
[
1− α+ exp

(
−2 e b(N)

)]−1/2

+
b(N)
a(N)

}2

− logN (4.9)

where

a(N) = (2 log logN)1/2

b(N) = 2 log logN +
1
2

log log logN − log Γ
(

1
2

)



112 CHAPTER 4. VARIANCE CHANGE DETECTION METHODS

The chosen value of α influences the “significance” of the detected variance change points, in

the sense that their number increases as α increases.

Our Matlab implementation of the SIC algorithm [Min05] allows for tuning the resolution of

the SIC algorithm at a given scale by two free parameters:

- the significance level α;

- the minimum segment size nmin, that is the minimum length of every subsequence in which

the binary segmentation procedure divides the original trace (this size, in general, can be

greater than the minimum distance between two detected change points).

As for the first variable, the value of the second influences the number of estimated change points.

In particular, their quantity increases as nmin decreases. The conclusion is that the exhaustiveness

and the readability of the results founded by the SIC algorithm derive from a trade-off between an

“enough low” α value and an “enough high” nmin value. This will be more clear in Chapters 6 and

7.

4.4.4 Empirical assessment of the power of the SIC algorithm

Following the approach presented in Section 4.3.4, we provide some empirical results on the power of

the SIC procedure from the analysis of 1000 independent samples of 2000-samples-long uncorrelated

gaussian white noise with a variance change point in the middle.

The results are shown in Figures 4.5 and 4.6 (histograms of the detected change points) and

Tables 4.1 and 4.2. Again, the results show the important role of the variance ratio, whose influence

on the quantity and quality (in the sense of proximity to the true change) of the detected change

points is very high. The 1.5 variance ratio is again the border above which more than 50% of “good”

change points are detected. For the 99% significance case the SIC performs better than ICSS at the

medium and higher variance ratios, and practically equal for the lower variance ratios, in terms of

quantity of “good” change points, mean and specially in the dispersion of points around the mean.

For the 95% case the results are not as good, and the ICSS seems to perform better, although at

the higher variance ratios the SIC still outperforms ICSS, and even at the lower variance ratios the

number of false points of SIC (30-40) is lower than those provided by the ICSS (around 100). In

both cases, the bias introduced by the SIC seems to be lower than that of the ICSS, since the mean

values obtained by SIC are closer to the true value of 1001.

When a correlated input is given to the SIC, we get similar results to those found with the ICSS.

Figure 4.7 shows the results of the analysis of an FGN signal with H = 0.9. The main difference

with the ICSS case is the decrease in the quantity of detected false changes, for all the situations.

Therefore, SIC performs better than ICSS even in the case of correlated input, and what is more

interesting, increasing the SIC significance level can somehow compensate the correlation. We will

use this fact in Section 7.1.
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Figure 4.5: Histograms of detected change points with the SIC at the 95% significance level, for the variance

ratios: a 1.2, b 1.3, c 1.4, d 1.5, e 1.75, f 2, g 3, and h 4.
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Figure 4.6: Histograms of detected change points with the SIC at the 99% significance level, for the variance

ratios: a 1.2, b 1.3, c 1.4, d 1.5, e 1.75, f 2, g 3, and h 4.
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Variance ratio Change points ±10 positions Mean Std. deviation

1.2 162 0 1032.1 493.7

1.3 1036 283 1014.6 188.9

1.4 1033 393 1008.9 153.2

1.5 1035 488 1005.2 121.6

1.75 1035 675 1006.6 112.9

2 1030 786 1010.2 121.4

3 1030 969 1000.5 119.0

4 1039 997 996.5 129.4

Table 4.3: Results for the detected change points with the SIC at the 95% significance level

Variance ratio Change points ±10 positions Mean Std. deviation

1.2 6 0 890.5 534.3

1.3 324 324 1006.7 224.5

1.4 1001 419 1006.8 96.1

1.5 1002 507 1006.2 75.9

1.75 1000 666 1004.0 34.2

2 1002 803 1004.4 21.0

3 1001 946 1001.6 10.5

4 1001 983 1001.5 5.7

Table 4.4: Results for the detected change points with the SIC at the 99% significance level

Figure 4.7: Histograms of detected change points with the SIC on a FGN signal with H = 0.9. From top to

bottom, left to right: variance ratio 1.2 at the 95% significance level, variance ratio 4 at the 95% significance

level, variance ratio 1.2 at the 99% significance level, and variance ratio 4 at the 95% significance level.
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4.5 Summary of the chapter

We have presented the ICSS and SIC variance change detection algorithms, and have provided

some results from an empirical assessment of their power. We have seen that the significance level

at which the variance change test is performed is the most influential parameter of the algorithms.

The results are also highly dependent on the variance change ratio: the higher variance difference,

the better detection ratios we get.

Are any of them better than the other? To begin with, the authors of SIC provided an analytical

expression for the significance level, while this parameter can only be obtained by the MonteCarlo

method for the ICSS. Regarding the empirical test of the power of the methods, two different

situations have been tested: uncorrelated and correlated processes.

• For the uncorrelated case, and at the 95% significance level, ICSS seems to perform slightly

better (in terms of “good” change points, mean and dispersion) than SIC at the lower variance

ratios, while SIC outperforms ICSS at the medium and higher variance ratios. For the 99%

significance level SIC performs almost equal to or better than ICSS. Besides, the (almost

always positive) bias introduced by the SIC seems to be lower than that introduced by the

ICSS; i.e, the means obtained by SIC are closer to the true value.

• When the input signal is correlated, SIC finds more true changes than ICSS for the 99%

significance level, and performs only slightly worse for the 95% case. However, SIC is much

better than ICSS in terms of the amount of false changes, at any significance level. This

is important, since although the orthogonal Discrete Wavelet Transform theoretically decor-

relates completely the wavelet coefficients, in practical situations we have detected residual

correlations. Besides, the use of redundant wavelet transforms such as MODWT, DTWT and

DDDWT will introduce different levels of correlation in the time series. Therefore, SIC-based

methods will be more robust against residual correlation than those that use the ICSS.

Though SIC seems to be better suited for our purposes than ICSS, their performance is not so

different so as to abandon the latter. In the next chapter we will study the performance of both

variance change methods when applied to the output of the wavelet transforms.



Chapter 5

Segmentation of scaling processes

5.1 Introduction

This chapter argues the need for an algorithm capable of segmenting a scaling process in regions with

a homogenous variance structure. Such an algorithm would open the way for detecting transitions

between regions with different scaling parameters. We first give a comprehensive overview of the

previous works done about this topic by other authors. Then we propose a method based on

the multiresolution detection of variance changes and the automatic clustering and alignment of

such changes across scales. While the wavelet transform and the variance change detectors have

already been described in Chapters 2 and 4, the last piece of our method, an alignment procedure

based on the Hough transform, is described in detail in this chapter. We also present some of the

implementation issues to be solved regarding each of the steps of our method. The chapter ends

with the description of the analysis methodology and the set of traces used in the evaluation of the

algorithms.

The main contributions of this chapter are the description of the previous works related to

the study of the non-stationarity of the scaling parameters of traffic, and the development of an

automatic clustering and alignment detection procedure based on the Hough transform [Min05,

RMSP05b, RMSP05a, RMS06, RZM06].

5.2 Nonstationarity of the scaling parameters of traffic

Chapter 3 has addressed the estimation of the Hurst parameter under the hypothesis of monofrac-

tality, that is, assuming the constancy of the scaling parameters across the entire trace. This is

not a good model in real applications since it is difficult to find stationary empirical traces with

a large number of observations. In other words, long-term measurements of real traffic tend to be

nonstationary. The causes for this phenomenon can be, for example, the daily, weekly, monthly and

even annually patterns of use, as was shown in [PTZD05] for DSL access links and in [RGK+03]

117
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for SNMP traffic, while other studies have found that the superposition of TCP sessions on an un-

congested network exhibit intrinsical nonstationarity, as explained in [CCLS01]. In such a complex

system as the Internet, with its protocols dynamics and changing behavior of users, it is difficult

to identify one single source of nonstationarity.

The changing behavior of the network affects not only the traffic volume, but also other, more

subtle characteristics of traffic, such as its scaling properties. Some studies have found that H

is correlated with the network load: Ethernet traffic was found to have a higher H during busy

periods [LTWW94], while VBR video has shown to exhibit higher H during high-activity peri-

ods [BSTW95].

5.3 Previous works

We face a general situation in which network traffic is highly variable both in its volume and

its scaling properties, which in turn makes difficult the prediction of network performance (recall

the strong influence of scaling on the behavior of queues and buffers, as shown in Section 1.3.2).

This fact opens the way to an almost unexplored field of research. The vast existing literature

on traffic modeling, and indeed on teletraffic performance analysis in general, is dominated by

scaling-stationary models. To our knowledge, few works have discussed the nonstationarity of scaling

parameters. We can group them as follows: studies that address the influence of non-stationarity on

the estimators, on-line estimation methods, and characterizations of traffic whose scaling parameters

are not stationary.

5.3.1 Influence of non-stationarity in the estimation of traffic parameters

One of the first studies to tackle the issue of non-stationarity and self-similar traffic was [DLO+94],

where the authors warned about the possibility that traffic volume variations could result in mis-

leading estimations of the scaling parameters.

Molnár and his colleagues [MD00, DM99] have been especially active in this field, studying the

bias introduced by level shifts, linear and polynomial trends in the performance of the estimators of

long-range dependence and self-similarity, such as the R/S statistic and the wavelet-based methods.

Abry, Roughan and Veitch studied the robustness of the LogScale Diagram when mean and

variance shifts are present [RV99a], finding that the LD is quite robust, though they assume a con-

stant scaling parameter across the traces. The wavelet transform is capable of filtering polynomial

trends, given a mother wavelet with the appropriate number of vanishing moments.

5.3.2 On-line estimation methods

There is an on-line version of the Abry-Veitch estimator that performs a progressive (in the sense

of cumulative) computation of subband variance and returns updated estimates using all available
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samples [RVA98]. It can work either in a cumulative mode, performing an estimation from the

initial time t0 up to the current time t, or in a constant-length time window mode. The cumulative

method actually returns a mean value of H with increasing accuracy as time advances, due to the

availability of more data for the variance sample estimators, that are updated each time new time

samples are captured. The second mode resets the variance counters each time the time window

starts. Figure 5.1 shows an example of the output of the progressive LogScale Diagram when applied

to a FGN trace with H = 0.7. The method does not provide a reliable estimation after a certain

number of samples are acquired, and needs some warm-up time until it converges to the true value

of the Hurst parameter of the source. The authors of the method estimate the transient period in

4096 samples. In our example each sample corresponds to a bin of δ = 10 ms, and 5000 samples

seem to be necessary in order to ensure the convergence of the estimator for this particular trace,

thus needing almost a minute in order to get a good estimation.

Figure 5.1: Example of the progressive version of the Abry-Veitch estimator, for a FGN source with

H = 0.7.

Following the aforementioned approach, Uhlig [Uhl02] developed the 3D-LD, an extension of the

LogScale Diagram that is able to show graphically the evolution of the scaling properties of traffic.

This tool computes the LD over constant-length windows and represents the variance of each scale

as a function of time.

Abry and Veitch [VA01] developed a statistical test of the constancy of the scaling parameter

over constant-length windows that is able to detect changes in H but is insensitive to changes in

the variance structure; i.e., it can detect variations in the slope of the LogScale Diagram but is

not able to detect changes in the second order parameter. The algorithm consists of splitting the

trace into m segments (windows) with the same length, performing the estimation of the scaling

parameters separately (α1 . . . αm), and testing the constancy of the αi with a Uniformly Most

Powerful Invariant (UMPI) test. The authors study the trade-off between time resolution and the

power of the statistic: if m is large the resolution is high, but on the other hand there will be few

scales for the LogScale Diagram-based estimation, and therefore the power of the constancy test
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will decrease. The test is applied to the Bellcore set of traces (BC-pAug89, BC-pOct89, BC-OctExt,

and BC-OctExt4), with m = 12, showing a very high variability of α along the traces, even for

the cases where the statistical test does not reject the null hypothesis H0 (no change is present).

For the BC-pAug89 trace, in particular, the value of α goes from 0.3 to 0.8, corresponding to Hurst

parameters in the range 0.65− 0.9. These values are coherent with the measures performed by the

same authors in [AV98] (see Section 5.3.3). The main drawback of the statistical test is its limitation

to long constant-length windows.

Sanihoglu and Tekinay [ST02] studied the real-time applicability of the wavelet and R/S methods

for the estimation of the scaling parameters of traffic. Their work was focused on the constraints to

be found in the real implementations of the estimators, such as the wavelet filter length, number of

scales, computational complexity and length of buffered traffic. Theirs is a theoretical work based

on partially-overlapped windows.

Finally, an accuracy-based approach has been reported for the real-time estimation of multi-

fractality, where the window length is variable and related to the confidence interval of the estima-

tion [AAI05, AAI06]. It is an interesting idea: the method accumulates samples until the confidence

interval of the multifractal estimator is below a certain value determined by the user, and then the

estimation is performed. The window length automatically adapts to the statistical properties of

data (which is also one of the properties of our method, though our criterium for the segmentation

is different).

5.3.3 Characterization of scaling-nonstationary traffic

Abry, Roughan and Veitch, in their first paper about the LogScale Diagram [AV98], studied the

changes in the Hurst parameter for the Bellcore set by dividing the traces in segments of similar

length and applying the estimator to each one of the pieces. They found fluctuations in the value

of the Hurst parameter. For example, the values of H for the BC-pAug89 trace, split in 32 segments

with the same length, are in the range 0.7− 0.9.

In a more detailed study, Abry, Veitch and Roughan analyzed 6 months of Ethernet traces from

a research center with the on-line version of the LogScale Diagram [RV99b]. They found some

correlation between the diurnal load cycle and the scaling parameter, though it was dependent on

the nature of the traffic (human or machine generated).

Furthermore, a wavelet-based study of TCP flow arrivals revealed nonstationarities, found no

strict scaling, and generalized the study to high-order scaling [Uhl04]. It has been reported that

some TCP mechanisms, such as Slow Start, Fast Retransmit, Fast Recovery, cumulative ACKs, and

ACK compression are the cause of short-time bursts (a group of TCP segments sent back-to-back

at line rate) which can impact queuing performance. Jiang and Dovrolis [JD03, JD05] have recently

shown that those short-time bursts can be the reason for scaling phenomena at short-time scales,

which appears in the LD as a characteristic elbow of the slope of the variance alignment and can

give birth to two or more differentiated scaling regimes.



5.4. SCOPE OF OUR WORK 121

5.3.4 Mathematical methods

The idea of applying a variance change detection method to the output of the wavelet trans-

form is not new, though to our knowledge nobody has applied it to the study of network traffic.

Whitcher [Whi98] studied the use of the DWT and MODWT transforms together with the ICSS,

for the characterization of the nonstationary series of Nile River minimum water levels, vertical

ocean shear measurements, and atmospheric phenomena such as the Madden-Julian oscillation.

5.4 Scope of our work

We begin by repeating the experiments performed by Abry and Veitch in [AV98] with the Bellcore

BC-pAug89 trace, split in 32 segments. The authors gave little data about the aggregation level,

the wavelet family and the scales used for the regressions. Assuming an aggregation level of δ = 10

msec, j1 = 3, j2 = 12, and using the db3 wavelet, we get Figure 5.2 (top), where H ranges from 0.67

to 0.86 and each segment corresponds to 9822 samples (98.2 seconds of real time). The analyses

with other wavelets (db1-db4) return similar results. The data obtained is coherent with the mean

value of 0.8 for H, though they clearly state that the scaling behavior of the trace is not stationary.

The same figure also depicts the mean traffic volume of the Bellcore trace, showing that though

there is some positive correlation between volume and H, specifically at the beginning of the trace,

there are also counterexamples of such a direct relation; see for example the volume peak around

segment 27, which coincides with a stable zone for H.

But why the choice of 32 segments? The same figure shows the results for the 64 segments case,

for which the Hurst parameter ranges from 0.63 to 0.92 and each segment corresponds to 4911

samples (49.1 seconds of real time). Though the general shape of the figure is similar to the 32

segments case, there are some values that differ considerably. See for example segments 10, 21,

41 or 58. In the 32 segments analysis the extreme values of H of those segments are masked by

the surrounding samples, making H take not so extreme values. Of course we have to consider the

confidence intervals (which are inversely proportional to the segment length) when comparing both

diagrams; one could think that the values found in the aforementioned segments can be explained

by the uncertainty of the estimation. But there are regions that do not change appreciably their

behavior, such as the “stable” zone defined by segments 24-34 (64 segments) or by 12-17 (32

segments), with a Hurst parameter stabilized slightly above 0.8.

The other real trace considered in our experiments also belongs to the Bellcore data set:

BC-OctExt. As described in Section 3.2.10, this trace is known to be much more variable than

BC-pAug89. When aggregated at δ = 1 second and analyzed with the db3 wavelet between j1 = 4

and j2 = 14, the LogScale Diagram returns a Hurst parameter of 0.944 (0.932, 0.956). Figure 5.3

shows the 32- and 64-segment analysis 1, which confirms the not-so-clear correlation between traffic

1where each segment corresponds to 3838 samples -1 hour and 4 minutes- and 1919 samples -32 minutes- respec-

tively.
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volume and Hurst parameter, and also the extreme variability of the scaling parameters of the

trace, which includes values far over 1 and under 0.5, confirming its nonstationarity [AV98].

In order to localize better the H-constant regions, we could perform a deeper analysis (128 or

more segments) and then join the segments with a similar behavior, but we would find a problem of

accuracy caused by the confidence intervals; furthermore, why should the boundaries coincide with

multiples of the segment size? Our aim is to develop a method capable of finding the boundaries

of the regions with homogenous scaling behavior, without having to perform the constant-length

window procedure.

5.5 Description of our method

The main matter of our work is the localization of the instants that bound the segments with

homogeneous fractal behavior. Since our estimation methods rely on the computation of the sam-

ple variances at each scale, our aim is naturally related to two other problems: the detection of

variance change points, and of their alignment in time. After this change points detection phase,

the estimation of the scaling parameters for each segment can be performed by the usual static

estimators described in Chapter 3. Figure 5.4 illustrates the elements that compose our algorithm.

Let us explain the different steps of our method with an example.

5.5.1 An example

Let x(n) be a time series composed of two different segments of FGN with the same mean and

variance, but with different Hurst parameters, say 0.5 for the first segment and 0.9 for the second

one. Without loss of generality, we assume that both segments are of the same length and therefore

the change point is in the middle of the series. Figure 5.5 shows such a trace, where the first

segment resembles white Gaussian noise, while the second segment exhibits strong low-frequency

components.

When the trace is decomposed by the multiresolution analysis (MRA) provided by a wavelet

transform at the J level, we get a set of J detail time series and one approximation. Each one of

these time series represents the time evolution of its associated subband. In particular, the variance

of each subband can be tracked. Figure 5.6 shows the detail coefficients of the FGN 05-09 trace

obtained with the Discrete Wavelet Transform. Note the different length of each scale due to the

downsampling procedure included in the DWT algorithm.

Figure 5.7 shows the superposition of the LogScale Diagrams for both segments, being the flat LD

the one of the H = 0.5 segment. This representation does not have any connection to the LD of the

whole x(n) trace, and is presented here just to make easier for the reader the comparison between

the variance distribution across scales. In such a situation, the variance change point algorithm

would detect a decrease in the variances of scales j = 1 and 2, no change or a slight change in scale

j = 3, and an increase in the variances at scales j = 4 . . . 15. Regarding the practical inexistence
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Figure 5.2: From top to bottom: 1) Evolution of the Hurst parameter of the BC-pAug89 trace, split in 32

segments, with δ = 10msec, j1 = 3, j2 = 12, and db3. The vertical lines are the 95% confidence intervals

of each estimation. 2) The mean volume of the BC-pAug89 trace in each of the 32 segments. 3) The Hurst

parameter analysis, for 64 segments. 4) The mean volume analysis, for 64 segments.
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Figure 5.3: From top to bottom: 1) Evolution of the Hurst parameter of the BC-OctExt trace, split in 32

segments, with δ = 10msec, j1 = 3, j2 = 12, and db3. The vertical lines are the 95% confidence intervals

of each estimation. 2) The mean volume of the BC-OctExt trace in each of the 32 segments. 3) The Hurst

parameter analysis, for 64 segments. 4) The mean volume analysis, for 64 segments.
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Figure 5.4: Scheme of the joint DWT-variance change detection method. VCD stands for Variance Change

Detection algorithm.

Figure 5.5: Trace composed of two FGN segments with Hurst parameters H = 0.5 (left) and H = 0.9

(right).

of a variance change at j = 3, we call this phenomenon a blind point, in the sense that no variance

change takes place at that scale. If we represent the location of the change point for each scale, we

get a diagram such as the one shown in the left of Figure 5.8.

If we plot not only the position, but also the type of variance change (increase or decrease) and its

size (the variance ratio), we get the diagram shown in the right of Figure 5.8, where the orientation

of the triangles denotes the type of change (upwards means increase, downwards means decrease)

and the size of the triangle is related to the logarithm of the variance ratio. This representation gives

a clear idea of the magnitude of the changes at each scale, but it is not as convenient for visualizing

the position of the changes. As expected, the lower scales show a variance decrease, while the higher

scales increase their variance. For the third scale, a change is still detected, though of a very low

magnitude (almost invisible in the right side of the figure), and its location seems to have been

changed to the right of its expected position, probably because of the difficulty experienced by the

variance change detection method when working with such a low variance ratio.

Apart from the aforementioned bias in the blind zone, there is also some variation in the lo-

calization of the changes due to issues related with the wavelet; for example, the DWT performs
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Figure 5.6: DWT detail coefficients versus time for the trace composed of two FGN segments with Hurst

parameters H = 0.5 and H = 0.9.

Figure 5.7: Variance distribution at each scale for two FGN traces with scaling parameters H = 0.5 (flat

spectrum) and H = 0.9.

especially bad at the higher scales (see the bias at scale j = 9, 11 and 13). Therefore, we need a

final step capable of automatically detecting the alignment of the change points and to somehow

correct the undesired variations by averaging the positions of teh changes detected across scales.

The method should therefore be capable of clustering the points in groups with an approximately

similar x-axis location, and deciding which of the change points correspond to a true variance

structural change, and then perform the average.
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Figure 5.8: Detected variance change points for the trace with a Hurst parameter change (0.5 → 0.9). Left :

the position of the change points. Right : size and sign of the detected variance change.

5.5.2 Issues related to our method

Summarizing the previous section, our traffic segmenting algorithm is composed of the following

steps:

1) Perform a wavelet-based decomposition of the original trace.

2) For every scale, apply an algorithm for variance change detection to the wavelet coefficient

series.

3) Perform a clustering process in order to identify the change points aligned in time and pass

them through a quorum vote. The simultaneous detection of changes across an adequate

number of scales will indicate a change point in the Hurst parameter.

4) Average the positions and provide the initial and final points of the segment.

5) Finally, if required, perform the estimation of the scaling parameters in the detected segments.

Let us now discuss some issues regarding the practical implementation of each of the steps.

Wavelet transform

As far as the first step is concerned, the main issue is the choice of the appropriate wavelet trans-

form. In particular, we have experimented with the wavelet transforms that were presented in

Chapter 2. We started with the DWT, but found that its lack of resolution at the higher scales is

a serious drawback for locating the lower frequency change points. Furthermore, the lack of time

shift invariance made the results dependent on the phase of the input trace.

The downsampling causes the number of DWT samples available at each scale to decrease with

increasing scale, due to the downsampling discussed in Section 2.4.6. The problem is illustrated in

Figure 5.9, where each detail coefficient at the 3rd scale covers the same time segment as 23 = 8

original samples. This prevents us from having a reliable detection of change points at the higher
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Figure 5.9: Illustration of the loss of time resolution at the higher scales of the DWT, due to the down-

sampling process.

scales, since the low-pass filtering smoothes the variance changes and makes the change point be

undetected. With regard to that, it is noteworthy to observe that a candidate change point must

be detected at an adequate number of scales (say, greater than half the number of the available

scales) in order to be elected.

That is why we tried the MODWT and its associated maximally oversampled analysis. An

MODWT-based algorithm provides higher resolution for the detection of change points. At the

higher scales, where LRD is actually to be detected, DWT-based algorithms perform badly because

of the limited number of samples available. The MODWT corrects this problem at the cost of a

larger number of computations and greater memory requirements. Unfortunately, it also introduces

correlation at higher scales, contradicting the assumption of independence in ICSS and SIC. These

methods assume uncorrelated and Gaussian inputs, and the presence of correlation at the higher

scales of the MODWT makes the methods detect false, spurious change points. Since the correlation

effect increases with the length of the mother wavelet, the shortest possible wavelet should be

used. In our experiments, we have used the Daubechies family, starting with db1 and increasing

the number of vanishing moments until the analysis is stabilized. In most cases, db2 or db3 are

sufficient.

We tried a couple of approaches in order to overcome the correlation problem. First, we saw

that forcing some parameters of the change point detection algorithms (such as its statistical sig-

nificance and the associated critical value of the statistic involved in the change point detection)

we could minimize the number of spurious change points. This approach can be understood as

raising the exigence for deciding if a change point candidate is to be accepted as a true change

or not. This empirical approach raised some questions about the statistical meaningfulness of the

whole procedure, though the results obtained were not bad. We later applied a technique called

Equivalent Degrees of Freedom (EDOF) [PW02, Whi98] that is used with the MODWT in order

to correct the correlation phenomenon when one is interested in computing the sample variance of

the wavelet coefficients, as is our case. It consists of taking just some of the coefficients, instead of

computing the sample variance over all of them. Actually, this is somehow equivalent to our first

method; instead of raising the critical level of the statistic that helps us decide if a change point



5.5. DESCRIPTION OF OUR METHOD 129

is valid, we reduce the value of the statistic with the EDOF approach and keep the critical value

associated for an uncorrelated signal. However, we found that the EDOF approach did not return

good results [ZR06] and abandoned it.

We then shifted our attention to the DTWT, hoping we could find a trade-off between time

resolution and correlation, keeping as much as possible the time-shift invariance property.

Apart from deciding on the wavelet transform to be used, other wavelet-related issues must be

taken into account. The choice of the mother wavelet is important, since it affects the estimation

in several ways. As with any filtering process, there are boundary effects due to the convolution of

finite-length sequences that influence the accuracy with which the wavelet variance is estimated;

boundary coefficients should not be used. Another effect is the phase shift introduced by the mother

wavelet. This can be corrected or minimized by the correct choice of the wavelet family (symlets,

for example). There is also a trade-off between wavelet filter length L, computational complexity,

and accuracy. Increasing L allows a better estimation of wavelet variance but requires a greater

number of computations and involves fewer non-boundary coefficients.

Variance change detection method

The second step of our method is strongly dependent on the choice of the variance change points

algorithm. Chapter 4 presented the Iterated Cumulative Sum of Squares (ICSS), described in Section

4.3, and the Schwarz Information Criterion (SIC), described in Section 4.4.

Recall that the main conclusions of Chapter 4 were that ICSS performs slightly better for

uncorrelated sources, while SIC is better with correlated signals. Since we expect a residual corre-

lation from the DWT, and different degrees of correlation with the redundant wavelet transforms

(MODWT and DTWT), SIC seems to be better suited to our purposes, though we will analyze

and compare the performance of both methods.

Alignment detection

Finally, in the third step we have to deal with the selection and clustering of the candidate change

points, in order to detect if a change is present in enough scales and close enough in time such as

to consider it as a variance structure change. An image processing technique, built on the Hough

transform, can help us. The Hough Transform is used in image processing for detecting features of

a particular shape through a polar representation of lines [Rus99].

Given the dispersion around the true change location, we will have to define a tolerance around

the (unknown) change position, and a quorum for a voting process that will decide if enough

clustered points are aligned in order to consider it as a Hurst parameter change location.

The following section describes the Hough-based procedure in detail.
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5.6 Hough transform-based clustering and alignment

5.6.1 The linear Hough transform

The Hough transform [Rus99] can be used to isolate features of a particular shape within a binary

image. Since it requires the desired features to be specified in some parametric form, the classical

Hough transform is most commonly used for the detection of regular curves such as lines, circles,

ellipses, etc. A generalized Hough transform can be employed in applications where a simple analytic

description of features is not possible. The main advantage of the Hough transform is that it is

tolerant of gaps in feature descriptions and is relatively unaffected by image noise.

Our interest will be concentrated on the linear Hough transform H(ρ, θ) of a binary image

I(x, y):

H(ρ, θ) =
∫

D

I(x, y) δ(ρ− x cos θ − y sin θ) dxdy (5.1)

where I(x, y) can take the value 0 or 1 (depending if the pixel is white or black), and D is the

region (x, y) of the space domain where the binary image is defined.

Figure 5.10: Parametric description of a straight line. Reproduced from [Min05].

The main idea underlying the linear Hough transform is the polar representation of a line in the

(x, y) plane (see Figure 5.10):

x cos θ + y sin θ = ρ (5.2)

This equation indicates that the Hough transform maps a line in the space domain (x, y) to a

point in the Hough domain (θ, ρ), where ρ > 0 is the length of the normal segment from the origin

to this line and θ ∈ [0, π) is the orientation of ρ with respect to the x axis. In other words, for any

point (x, y) on this line, θ and ρ are constant.

The dual interpretation of the above is that a point (x0, y0) in the space domain is mapped in

the Hough domain to a cosinusoid given by the equation:

ρ(θ) =
√
x2

0 + y2
0 cos

(
θ − arctan

y0
x0

)
(5.3)
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The conclusion is that points which are collinear in the cartesian image space are easily detected

in the Hough space, as they yield curves which intersect at a common (ρ, θ) point.

In order to illustrate the linear Hough transform, Figure 5.11 shows a binary image and its

Hough transform. The 250x250 pixels image contains a square whose dimensions are 150x150 pixels;

therefore, there are alignments at positions 50 and 200. The images have been inverted for printing

purposes; i.e, in the original the background is black (corresponding to value 0) and the rectangle

is white (corresponding to 1). The resolution of the Hough transform in both axis ρ and θ is 1 unit,

corresponding to 1 pixel and 1 degree, respectively.

Figure 5.11: Image containing a square and its corresponding Hough transform (right). Both images are

inverted for printing purposes.

The two bright spots in the θ = 0◦ and ±90◦ directions of the Hough domain (which is symmetric

by definition) at ρ = ±50 and ρ = ±200 provide the parameterization for the lines that compose

the square.

As far as the implementation is concerned, the Hough space is quantized into finite intervals or

accumulator cells (i.e., a multidimensional array). Both θ and ρ resolutions can be tuned (see Section

5.6.3 for an example). As the algorithm runs, each point in the space domain is transformed into

a discretized cosinusoid in the Hough domain and the accumulator cells which lie along this curve

are incremented. Peaks in the accumulator matrix represent strong evidence that a corresponding

straight line exists in the image.

5.6.2 Implementation details

The first issue to be discussed is our Matlab implementation of the clustering procedure, whose

main steps are:

1) Generate a digital image of JxN pixels set to 0 (black), where N is the data size and J the

number of available scales.



132 CHAPTER 5. SEGMENTATION OF SCALING PROCESSES

2) If the variance change detection method at scale j (j = 1 . . . J) detects a change point posi-

tioned at time k (k = 1 . . . N), set the correspondent pixel to 1 (white).

3) Perform the Hough transform of the so-obtained image, changing from the (j, k) domain to

the (ρ, θ) domain.

4) Select the portion of the accumulator matrix referring to the θ = 0 (vertical) direction, since

we are looking for vertically aligned points.

5) Find the ρMAX coordinates corresponding to the maxima of such array (i.e., to the “better

aligned” segments of candidates as change points).

6) Convert every polar coordinate ρMAX to the corresponding kMAX position.

7) Take the set of kMAX values as the estimated global change points vector k̂ ∗.

The above exposed clustering procedure may be tuned by three parameters:

• The time resolution ∆k of the method. The k axis is divided in intervals of length ∆k and

consider two votes at different scales to be assigned to the same candidate if they fall within

the same interval.

• The quorum Q, which is the minimum number of votes needed by a candidate in order to

be elected. It is beyond doubt that the critical choice resides here, since we have to decide

how many scales are enough to indicate a change in the Hurst parameter.

• The maximum number of global change points nMAX . This indicates the maximum number

of potential candidates, so that choosing a conservative value (for example nMAX = 100) does

not affect results at all.

We finally describe the output of the clustering algorithm, which is given by:

- the two-columns matrix Hvotes, containing the centers of the voted intervals (of size ∆k) in

the first column and the corresponding number of votes in the second column;

- the vector of the global estimated change points k̂ ∗.

The computation of the k̂ ∗ elements is performed by the following steps:

1) Take memory of the detected change points at all available scales by the auxiliary vector k0.

2) Select the n < nMAX rows of Hvotes corresponding to the candidates that reach the quorum.

3) Calculate every k̂ ∗ element as the corrected mean of the correspondent detected change

points contained in the k0 vector. In this way we minimize the dispersion of the change

location estimation.
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5.6.3 Application to a synthetic trace with changes in the Hurst param-

eter

We now apply the automatic clustering procedure based on the Hough transform to the trace of

Figure 5.12 (left), composed of 3 segments with different Hurst parameters (H = 0.8 for 1 ≤ k ≤
65536, H = 0.9 for 65537 ≤ k ≤ 98304, and H = 0.7 for 98305 ≤ k ≤ 131072). More precisely,

the method is applied to the change points diagram shown in the right side of Figure 5.12, whose

Hough transform of the diagram is shown in Figure 5.13. On the left side the resolution for θ is

1◦, while the right side has been computed with a resolution of 60◦ and one of the bins centered

at 0◦, which corresponds to the X axis. The second representation makes it easier to identify the ρ

of the change point alignments by inspecting the bin centered at θ = 0. Two clear alignments are

detected around ρ = 65000 and ρ = 100000, corresponding to the change alignments at k = 65537

and k = 98305. A third, weaker line is seen close to ρ = 58000, corresponding to the biased change

point detected at scale j = 6 for the first transition.

Figure 5.12: Left: FGN trace with 3 segments with H = 0.8, H = 0.9 and H = 0.7. The change points are

at k1 = 65537 and k2 = 98305. Right: Detected variance change points at each scale.

Choosing ∆k = 1500, Q = 3, nMAX = 100, we obtained the following results:

k̂0
∗ =

[57326, 64036, 64138, 65016, 65472, 65502, 66368,

98145, 98172, 98304, 98390, 98772, 98856, 99744]

Hvotes =

(
57655 63724 65241 66759 98621 100138

1 2 3 1 6 1

)ᵀ

k̂ ∗ = [65330, 98440]

As we can see, the estimated global change points vector k̂ ∗ is close to the theoretical one

k ∗ = [65537, 98305].
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Figure 5.13: The Hough transform of the change point diagram of Figure 5.12. Left : θ resolution 1◦. Right :

θ resolution 60◦.

5.7 Interpreting the results of the segmentation method

As has been described in the previous paragraphs, our method is able to locate the simultaneous

change of variance across scales, which can correspond to either a variance change of the total

process (i.e., in all scales) or to a Hurst parameter change. The output of the algorithm is the set of

segments in which the original trace is divided. Inside each of the segments a variance and scaling

parameter estimation can be done. Therefore, we can provide a piece-wise segmentation of var(t)

and H(t).

Interpreting the results of our method is easy when one is working with synthetic traces. A shift

in the traffic volume leads to a variance change at every scale and all changes are simultaneously

positive (increase) or negative (decrease), while a change in the scaling parameter produces different

signs in the variance change (the scales above the blind point will increase while the others will

decrease, or vice versa) and possibly a blind point in the middle scales. If we assume a self-similar

model, we will look for strict variance alignments; in contrast, an LRD model only needs alignments

at higher scales. Real traffic traces are usually more complex to interpret as we can find simultaneous

changes of variance and scaling parameter, or alignments in limited ranges of scales. Therefore,

what we find are the boundaries of the segments with homogenous variance structure, which in

turn coincide with the regions where the scaling parameters of traffic remain constant.

One could argue that since we assume an LRD model in our analysis, we lose generality due

to our focus on monofractality rather than multiscaling or multifractality. However, recent studies

have shown that a Poisson model for sub-second scales can be employed with core network traffic,

while at higher scales piecewise-linear nonstationarity and long-range dependence seem to fit well

with measurements of real networks [KMFB04]. Uhlig [Uhl04] has recently identified two different

scaling regimes in network traffic: multifractality at small timescales, and LRD at large timescales.

These findings, especially the former, reinforce the need for a method like ours, capable of detecting

the changes in the low-frequency LRD components; besides, even if the trace under study is not
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LRD, we can still look for less-rigorous alignments, like the typical effect produced by congestion or

rate limitation of TCP traffic on WANs that increases the value of the variances over selected scales

(usually at scales below round-trip time, where TCP rate adaption occurs). In this sense, our work

can be useful when used at the higher timescales, meaning that the granularity of our method will

be of seconds or above. This timescale of work is appropriate, since the computations involved in our

method would not be possible to perform at a micro- or millisecond scale. Therefore, our methods

will not be useful for adapting the behavior of TCP (such as the fractal-aware congestion control

described in [HGHP02]), but it would be appropriate for resource control described in [EC05], or

the effective bandwidth estimator described in [YTJ01]. Our method would trigger the update of

these algorithms.

Finally, we want to emphasize that our approach is more general than the constant window-

based methods, since we can localize the variance-transition points to any position and scale. In

addition, we can monitor the second order nonstationarities of the time series (both for the whole

process and scale-by-scale).

5.8 Analysis methodology

For each of the wavelet transforms considered, and for both variance change point detection methods

(ICSS and SIC), we will analyze the following situations:

• A pre-computed FGN trace with Hurst parameter H = 0.8 (fgn08.mat) whose length is

131072 samples, with zero mean and unit variance. The trace has been generated with the

Matlab FBM generator. No change point should be detected. The trace is shown in Figure

5.14 (left).

• The same FGN trace with an abrupt increase of the mean (from µ1 = 0 to µ2 = 5) for its

second half part. No change point should be detected. The trace is shown in Figure 5.14

(right).

• A FGN trace of 262144 samples with H = 0.8 and a variance increase (from σ2
1 = 1 to σ2

2 = 4)

in its second half part. The change point should be detected at all scales and be aligned at

position k = 65537. The trace is shown in Figure 5.15 (left).

• A FGN trace of 262144 samples trace with a Hurst parameter change, the first and the

second half of which are given by the fgn05.mat and the fgn09.mat pre-computed traces,

respectively. A Hurst change point should be detected at position k = 131073. The trace is

shown in Figure 5.15 (right).

• A similar trace, with a not so abrupt change in the Hurst parameter (from H = 0.7 to H = 0.8

is also analyzed.

• A trace with 3 segments of FGN (H = 0.8, 0.9 and 0.7) with changes at positions t1 = 65537

and t2 = 98305 and a total length of 131072 samples. The trace is shown in Figure 5.16 (left).
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Figure 5.14: Left : FGN trace with H = 0.8. Right : the same trace with a mean increase of value 5 in its

second half part.

Figure 5.15: Left : FGN trace with H = 0.8 with σ2
1 = 1 and σ2

2 = 4. Right : FGN trace with two segments

with H = 0.5 and H = 0.9 (σ2 = 1).

Figure 5.16: Left : FGN trace with three segments with different Hurst parameter (H = 0.8, 0.9 and 0.7).

The change points are located at t1 = 65537 and t2 = 98305. Right : FGN trace with four segments

with different Hurst parameter (H = 0.9, 0.5, 0.7 and 0.8). The change points are located at t1 = 16385,

t2 = 32769, t3 = 98305. The variance is constant and unitary (σ2 = 1).
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Figure 5.17: FGN trace with four segments with different variance and Hurst parameter: H = 0.5, σ2 = 1,

H = 0.9, σ2 = 2, H = 0.9, σ2 = 1, H = 0.5, σ2 = 2. The change points are located at t1 = 32769, t2 = 65537

and t3 = 98305.

Figure 5.18: The Bellcore BC-pAug89 trace aggregated at the 10 ms scale.

Figure 5.19: The Bellcore BC-OctExt trace aggregated at the 1 s scale.
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• A more elaborate example considers a 131072 samples trace composed of four segments with

H = 0.9 (N1 = 16384 samples of the fgn09.mat trace), H = 0.5 (N2 = 16384 samples of

the fgn05.mat trace), H = 0.7 (N3 = 65536 samples of the fgn07.mat trace) and H = 0.8

(N4 = 32768 samples of the fgn08.mat trace). The mean and variance stay constant (0 and

1, respectively). The trace is shown in Figure 5.16 (right).

• A 131072 samples trace composed of four segments of 32768 samples each, with H = 0.5, σ2 =

1, H = 0.9, σ2 = 2, H = 0.9, σ2 = 1, H = 0.5, σ2 = 2. The trace, shown in Figure 5.17,

includes two simultaneous changes of variance and Hurst parameter at k = 32769 (H increase,

variance increase) and k = 98305 (H decrease, variance increase).

• In order to empirically assess the power of the procedure, we generated 1000 independent

realizations of 262144 samples-long traces with H = 0.5 and H = 0.9 in the first and second

half of the trace, respectively. The quantity and quality (in terms of its closeness to the true

change point, histograms and dispersion of the detected changes) are analyzed.

• Finally, the Bellcore BC-pAug89 and BC-OctExt trace aggregated at the 10 ms a 1 s scales,

respectively, are analyzed as examples of real traffic. More details of these traces can be found

in Section 3.2.10 and 5.4. The traces are shown in Figures 5.18 and 5.19.

Not all the situations will be analyzed for each algorithm; for the cases where no new results

are obtained, its description will be skipped.

5.9 Summary of the chapter

This chapter has addressed the need for algorithms that can track the scaling parameters of traffic,

and has presented a comprehensive list of works done by other authors regarding the topic. We

propose an algorithm built from three pieces: a wavelet transform, a variance change detection

method applied to each of the wavelet subbands, and a clustering and alignment detection method.

We have discussed several issues regarding the practical implementation of the method, and have

proposed the Hough transform as the clustering procedure. Finally, the chapter has described the

analysis methodology that will be used in the following chapters. Chapters 6, 7 and 8 will deal with

the DWT, MODWT and DTWT-based methods, respectively.



Chapter 6

DWT-based segmentation methods

6.1 Introduction

This chapter presents the issues related to the joint wavelet-variance change detection methods

based on the Discrete Wavelet Transform, namely DWT-ICSS and DWT-SIC. The performance

of the algorithms will be studied for the cases of synthetic LRD and real traffic traces. We start

by presenting some issues related to the DWT-based method such as the scale alignment and the

lack of resolution at the higher scales. A characterization of the statistical distribution of the DWT

coefficients is provided, due to its influence in the performance of the segmentation methods. A pure

FGN trace is analyzed, in order to evaluate the insensitivity of our algorithms to deviations from

the ideal case. We later test the (desired) blindness of our methods to changes in the series’ mean.

Then an analysis of the detection capabilities of variance and Hurst parameter changes (either single

or multiple) is performed, together with an empirical assessment of the test power. The case of a

simultaneous variance and Hurst parameter change is also studied. The methods are then applied

to real traffic traces from the Bellcore data set. Finally, a progressive, near-real-time version of the

algorithms is described.

Some of the results of the DWT-based methods have been published in the following refer-

ences: [RS04a, RS04b, RS05b, RSdA05, RS05c], while the progressive version of the algorithm was

described in [RMCS04, RS05a, Min05].

6.2 DWT-based algorithms

The main challenge of the DWT-based algorithms comes from the different quantity of coefficients

available at each scale, since each branch of the DWT filter bank suffers a different number of

decimations, as discussed in Section 2.4.6. For example, if the original trace X(t) has 1024 samples

and we perform the decomposition with the db1 wavelet family, the sequences dX(j, k) will have

139
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Figure 6.1: Left : time alignment between the DWT coefficients at scales j = 1, 2, 3, using db1 wavelet.

Right : the same DWT coefficients, after the phase correction.

n1 = 512 samples for j = 1, n2 = 256 samples for j = 2, n3 = 128 samples for j = 3 and so on.

This causes the sequences dX(j, k), j = 1, . . . , J to be misaligned, as shown in Figure 6.1 (left).

Therefore, the question is: how can we align the position of the wavelet coefficients with their

zone of influence? We have to find the time alignment between the original trace and the DWT

coefficients at different scales. For example, again from Figure 6.1 (left), we see that the segment

X(9), . . . , X(16) of the original trace is related to:

- the coefficients dX(1, 5), . . . , dX(1, 8) at scale j = 1;

- the coefficients dX(2, 3), dX(2, 4) at scale j = 2;

- the coefficient dX(3, 2) at scale j = 3.

In order to provide a good estimation of the change points vector k at scale j, a scale-dependent

alignment is needed, as shown in Figure 6.1 (right). If we use the db1 wavelet family, this correction

will be

k̂ ′(j) = k̂(j) · 2j (6.1)

while for the other wavelet mothers the expression depends on the scale and on the delay introduced

by each filter bank (see Section 2.4.5).

The other challenge of the DWT-based methods, as we will see in the following paragraphs, is

the smoothing effect suffered by the variance changes at the higher scales. Recall that the afore-

mentioned scales correspond to the lower frequencies of the signal, which makes the changes appear

less abrupt than at the lower scales. This will redound in a decrease in the quantity of detected

change points at those scales.

In the following sections we present some examples that highlight the properties and performance

of the DWT-ICSS and DWT-SIC algorithms, following the methodology described in Section 5.8.
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6.3 Statistical distribution of the DWT coefficients

Before applying the variance change detection methods, one should check the distribution of the

wavelet coefficients. The DWT transforms are, basically, the output of a difference operator. As

was described in Chapter 2, the mother wavelet is an oscillating function with positive and negative

regions, and its associated filters reproduce this behavior. The best example of this property is the

Haar (db1) wavelet, which is exactly a one-tap difference operator. The higher order Daubechies

wavelets and the other wavelet families exhibit a smoother differentiating behavior, but essentially

the effects are the same: the wavelet coefficients tend to follow a Laplacian distribution centered at

zero, as is expected from a differentiating operator.

The Laplacian-shaped distribution at the output of the DWT is inadequate if we want to ap-

ply the variance change detection methods to the DWT coefficients; recall that the ICSS and SIC

statistics expect a Gaussian input. Fortunately, the Laplacian distribution, though clearly differen-

tiated from the Gaussian, still keeps some properties in common with the latter, such as symmetry

around the mean and its light-tailed nature. Actually, both the Gaussian and Laplacian as well as

the Dirac delta and uniform distributions are particular cases of the so-called Generalized Gaus-

sian distribution [DMGFRD01]. Such a distribution has been found to appropriately describe the

distribution of the wavelet coefficients of images [MV02] and, more important to our interests, the

wavelet coefficients of real network traffic traces [Glo05]. The probability density function of the

GGD is given by

f(x) =
λp

2Γ( 1
p )
e−λ|x−m|p (6.2)

where 0 ≤ p < +∞ is the shape parameter, λ relates to the variance of the distribution, m is the

mean, and

Γ(z) =
∫ +∞

0

tz−1e−tdt, z > 0 (6.3)

The shape parameter p plays an important role, since it modulates the appearance of the distri-

bution. Figure 6.2 shows the probability density function1 for some values of p, with the following

particular cases:

• p = 0: Dirac’s delta function.

• p = 1: Laplacian distribution.

• p = 2: Gaussian function.

• p = +∞: Uniform distribution.

We are aware of and assume the limitation implied by using ICSS and SIC for non-gaussian

input, but to our knowledge few works have considered the case of variance change detection in

non-gaussian time series. Among them, the most important for our interests was carried out by Chen

and Gupta [CG00], who studied the asymptotic distribution of the SIC statistic under restricted2

1The Matlab code for the generation and estimation of the Generalized Gaussian Distribution was developed by

Minh N. Do [Do].
2They assume that the first four moments of the input random variable behave as those of the Gaussian distri-

bution. These conditions seem to be rather technical and not have an important influence in the final result.
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Figure 6.2: Probability density function of the Generalized Gaussian distribution with m = 0, λ = 1
20

and

different values of the shape parameter p. From top to bottom, left to right, p = 0.01 (almost Dirac’s delta),

p = 0.5, p = 1 (Laplacian), p = 1.5, p = 2 (Gaussian), p = 100 (almost uniform).
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Figure 6.3: Histograms (left) and probability plots for graphical normality testing (right) of the DWT

coefficients of the FGN trace with H = 0.8 when analyzed with db1. From top to bottom, the analysis for

the coefficients at scales j = 1, j = 5 and j = 10.
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Figure 6.4: Histograms (left) and probability plots for graphical normality testing (right) of the DWT

coefficients of the FGN trace with H = 0.8 when analyzed with db3. From top to bottom, the analysis for

the coefficients at scales j = 1, j = 5 and j = 10.
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non-normality and found it to follow the same distribution as in the Gaussian input case. No

equivalent study has been found for the ICSS, but since both methods rely on the Cumulative Sum

of Squares (CSS) statistic, we hypothesize that the behavior of the ICSS under non-normality will

not deviate too much from the results obtained in the Gaussian case.

We comment now on the distribution of the wavelet coefficients of the synthetic traces that we

have used in out experiments. Figures 6.3 and 6.4 show the histograms and the probability plots

for graphical normality testing of the FGN trace with H = 0.8 when analyzed with db1 and db3,

respectively. In both cases, the Gaussian nature of the original trace keeps the distribution even at

the higher scales, for which the probability plots is a more precise instrument than the histogram.

The estimated shape parameter of the GGD is shown in Table 6.1. The first scale seems to be

almost perfectly Gaussian, while the higher scales present a shape parameter slightly higher than

2. No important differences have been found regarding the wavelet order; the use of db1 or db3

does not influence the distribution of the wavelet coefficients. Similar results were found for other

values of H in the range 0.5 ≤ H < 1.

Scales j = 1 j = 5 j = 10

db1 1.97 2.16 2.12

db3 1.99 1.99 2.16

Table 6.1: GGD shape parameter of the DWT decomposition of the FGN trace with H = 0.8.

6.4 Analysis of a pure FGN trace

We begin with the analysis of FGN traces of length 131072 samples, whose Hurst parameter (H =

0.8), variance (unit) and mean (zero) are constant. We only describe the results obtained with the

H = 0.8 case, which we consider representative of the typical H values found in network traffic.

The results are similar for other values of H in the range 0.5− 0.9. We are aware of the statistical

unreliability of the approach and do not pretend the results to be generalizable, since we rely on

just a realization; we rather provide them as an example of how the algorithms work at each of the

steps. Later we will provide more statistically-rooted results by performing the same analysis over

1000 realizations of a similar trace.

The analysis is performed at the J = 15 level3. The method should not return any change point.

However, the residual correlation introduced by the wavelet transform when long wavelet filters are

used may fool the method. The DWT detail coefficients (using the db1 wavelet family) are plotted

in Figure 6.5.

3Scales 16 and 17, though available (217 = 131072), have so few coefficients and are so unreliable that, following

the advice from Abry and Veitch [VA], we skip them.
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Figure 6.5: DWT decomposition of the FGN trace, for j = 1, 2, 3, 4, 8 and 12, using db1 wavelet. Notice

the difference in the units of the y axis.

6.4.1 DWT-ICSS

Figure 6.6 shows the ICSS statistic computed at the 95% significance level at scales j = 1, . . . 4, 8

and 12, together with their associated normalized critical values. Notice the difference in the lengths

of the coefficient series, motivated by the downsampling performed by the DWT. The figures depict

the different series aligned in time; this means that the shorter series (the higher scales) have

been expanded in their x axis in order to coincide with the longer ones. Since the trace possesses

homogeneous variance, we observe that:

- the plots of the details dX(j, k) = dj(k) do not exhibit a change in variance for any j;

- the DWT-ICSS statistic D(j, k) = Dj(k) oscillates around zero for all j.

- no value of the DWT-ICSS statistic exceeds the critical value D∗.

We performed the DWT-ICSS analysis at the 95% and 99% significance level, for a set of

Daubechies mother wavelets with different number of vanishing moments. The results obtained

with the DWT-ICSS at the 95% significance level are:

• db1: no change points.

• db2: no change points

• db3: three change points at (j = 2, k = 87276, k = 99006), and (j = 8, k = 62995).

• db4: four change points at (j = 2, k = 87442, k = 99772), (j = 7, k = 38685), and (j = 12, k =

117274).

• db5: five change points at (j = 9, k = 91849), (j = 11, k = 118328), (j = 12, k = 114688),

(j = 13, k = 98304), and (j = 14, k = 90112).

while DWT-ICSS at the 99% significance level returned:

• db1: no change points.
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• db2: no change points

• db3: one change point at (j = 2, k = 87276).

• db4: two change points at (j = 2, k = 87442) and (j = 12, k = 117274).

• db5: three change points at (j = 9, k = 91849), (j = 12, k = 114688), and (j = 13, k = 98304).

As we expected, for the lower order wavelets no changes are detected, while the higher order

analysis return isolated, spurious change points that are not significant (no relevant alignment

across scales is detected in any case). Performing the analysis above the db5 wavelet made no sense,

due to to the high amount of spurious points. Besides, the higher the significance level, the less

spurious points survive.

6.4.2 DWT-SIC

For the Schwarz Information Criterion case, Figure 6.7 shows the SIC(k) statistic, together with

a horizontal line at SIC(n) − cα, where cα is the critical level computed at the 95% significance

level. Recall that the minimum information criterion states that the null hypothesis H0 (no change

is present) is accepted when SIC(n) ≤ min1<k<n SIC(k) + cα. Therefore, when the horizontal line

is under the minimum value of the SIC(k), the algorithm decides that no change is present, as is

the case of all the scales plotted in Figure 6.7.

For the DWT-SIC case at the 95% significance level, we get the following results:

• db1: one change point at scale (j = 15, k = 65536).

• db2: one change point at (j = 6, k = 130880)

• db3: one change points at (j = 2, k = 87376)

• db4: four change points at (j = 7, k = 254) and (j = 12, k = 117274, k = 120724, k = 127622).

• db5: 16 change points, all at scales over j = 9, concentrated at the beginning and the end of

the sequence.

while the 99% significance level analysis returns:

• db1: one change point at (j = 15, k = 65536).

• db2: no change points.

• db3: no change points.

• db4: three change points at (j = 12, k = 117274, k = 120724, k = 127622)

• db5: three change points at (j = 12, k = 114688, k = 121241, k = 124518)

As expected, the higher the significance level, the less spurious points are detected. Compared

to the results obtained for the ICSS, the higher performance of SIC working at 99% in front of the

residual correlation is evident, as was expected from the tests performed in Chapter 4. However,

the 95% significance level gives very bad results for the higher order wavelets.

Summarizing, we can conclude that apart from some, non-aligned spurious change points, the

analysis of homogenous FGN traces with the DWT-based methods give good results, as long as

the wavelet order is on the order of 1-4. No alignment of two points at different scales was found;

therefore, a quorum of 3 aligned change points seems enough for our clustering procedure.



148 CHAPTER 6. DWT-BASED SEGMENTATION METHODS

Figure 6.6: CSS statistic applied to the wavelet details of the FGN trace, for j = 1, 2, 3, 4, 8 and 12, using

db1 wavelet at the 95% significance level. The associated critical levels ± 1.358√
T/2

are depicted as red horizontal

lines. Notice the difference in the units of the y axis.

Figure 6.7: SIC(k) statistic applied to the wavelet details of the FGN trace, for j = 1, 2, 3, 4, 8 and 12,

using db1 wavelet at the 95% significance level. The associated critical level SIC(n) − cα is plotted as a

horizontal line. Notice the difference in the units of the y axis.
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6.5 Analysis of the effects of a mean change

We now consider a trace of 262144 samples (plotted in Figure 5.14, right) composed as follows: the

first half includes the fgn08.mat synthetic trace discussed in Section 3.2.9 (with mean µ1 = 0),

whereas the second half was obtained by adding to every sample of the same trace a constant value

µ2 = 5. Our method should ideally be blind to changes in the series’ mean, but the impurities of

the actual trace (which is an approximation of an ideal FGN) and the non-ideality if the ICSS and

SIC algorithms may make the methods detect false changes. The DWT analysis is performed at

J = 15 scales, for the 99% significance level, using db1-db5.

6.5.1 DWT-ICSS

For the DWT-ICSS, the results are:

• db1: no change points.

• db2: four change points at (j = 9, k = 65027, 66044) and (j = 11, k = 63550, 73479).

• db3: five change points at (j = 2, k = 87276), (j = 8, k = 63757, 68330) and (j = 11, k =

63608, 69391).

• db4: five change points at (j = 2, k = 87442), (j = 11, k = 63663, 69280) and (j = 12, k =

62086, 68985).

• db5: five change points at (j = 10, k = 64572, 68427), (j = 11, k = 63715, 67356) and (j =

12, k = 58982).

It seems that the higher scales of the wavelets above db1 are sensitive to the mean change,

though the alignment, if any, is limited to a couple of scales. When the clustering and alignment

method with a quorum of 3 or more aligned points is applied to the trace, no alignment is detected.

Therefore the quorum used in our following experiments should be above 3.

6.5.2 DWT-SIC

For the DWT-SIC, the results are:

• db1: one change point at (j = 9, k = 65536).

• db2: no change points.

• db3: three change points at (j = 11, k = 63608, 67463, 69391).

• db4: no change points.

• db5: no change points.

Though some spurious points appear near the mean change, the SIC-based method is far less

sensitive to level shifts. The results are similar to or better than those obtained with the original,

mean-constant FGN trace. As was the case with DWT-ICSS, no change alignments are detected,

though the SIC method comes closer to the ideal result (no changes detected).
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6.6 Analysis of the effects of a variance change

Contrary to the previous sections, we introduce here variance changes that our method must detect.

We begin studying a trace with a single variance change in the middle. The first half of our zero

mean trace (plotted in Figure 5.15, left) has a Hurst parameter H = 0.8 and variance σ2
1 = 1. The

second half has the same H, but different variance σ2
2 = 4. The DWT has been performed at the

deepest level (J = 17), using the Haar (db1) wavelet, though we have used only the j = 1 . . . 15

scales. The detail coefficients for some of the scales can be seen in Figure 6.8, together with their

autocorrelation functions in Figure 6.9, where it can be seen that the series are almost uncorrelated,

thanks to the decorrelating properties of the DWT (see Section 3.2), but still there is some residual

correlation.

6.6.1 DWT-ICSS

As can be seen in Figure 6.8, the DWT detail coefficients exhibit an evident change of variance

around the middle of the series (corresponding to point t1 = 131072 in the original trace), though

as the scale increases, the change point is not so clear. This in turn explains why this change point

is accurately located as the absolute maximum of the ICSS statistic for the lower scales, but not

as clearly for the higher scales, as shown in Figure 6.10. Notice the bias phenomenon in the higher

scales (j = 11 and j = 13) that makes the minimum of the CSS be deviated towards the right side

of the true position of the changepoint. For j = 11 there are actually two local minima, one around

position k = 64 (the true change point) and the other, which happens to be the global minimum,

around position k = 80. For the j = 13 case, the true change (now to be found at k = 16) has

disappeared, while the global minima is clearly located at k = 21.

Figure 6.11 shows the position of the detected change points by the ICSS at each scale, for the

two significance levels (95% and 99%) using db1 wavelet. The 95% case returns some false points,

such as the two extra changes at the 7th scale and the displaced points at the 11th and 13th scale.

This bias comes from the behavior of the CSS statistic commented on the previous paragraph. These

kinds of situations will be handled via the automatic alignment-detection-and clustering procedure

implemented with the Hough Transform described in Section 5.6.

When the analysis is performed at the 99% significance level (Figure 6.11, right), the results

improve slightly. Ideally, the change should be located at the middle of the series at all scales. The

change point is clearly located (with some fluctuations in the position) at the lower scales (up to

j = 12), with the exception of j = 11, where the point is located at k = 163840. The other case

of bias of the CSS that we found at scale j = 13 does not appear in Figure 6.11 because for scales

above j = 12 the CSS statistic is under the critical level D∗, and therefore no change point is

considered valid. This is the consequence of the smoothing effect of the higher scales of the DWT

(a signal filtered by a cascade of low-pass filters, followed by a high-pass filter). In order to correct

this, we would need a wavelet transform with higher time resolution at the higher scales (lower

frequencies); this approach will be explored in Chapter 7.
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Figure 6.8: DWT detail coefficients of the trace with a variance change, for j = 1, 2, 4, 8, 11, 13, using db1

wavelet.

Figure 6.9: Sample autocorrelation of the DWT detail coefficients, using db1 wavelet, of a FGN trace with

a variance change, for j = 1, 2, 4, 8, 11, 13, with the 95% confidence intervals (horizontal lines).
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Figure 6.10: CSS statistic applied to the wavelet detail coefficients of a FGN trace with a variance change,

for j = 1, 2, 4, 8, 11, 13, using db1 wavelet. The 95% critical values ± 1.358√
T/2

are the horizontal red lines.

Regarding the influence of the wavelet order, Figure 6.12 shows the detected change points at the

99% significance level, when wavelets with a higher number of vanishing moments are used (db2 and

db3). No relevant differences are detected when compared with the db1 case, apart from a certain

increase in the bias of the higher scales, emphasized by the greater smoothing effect introduced by

longer wavelet filters. The nonexistence of polynomial trends in the synthetically generated FGN

traces explains the (almost) invariance of the results.

Finally, the clustering/alignment procedure is applied to the change point diagrams aforemen-

tioned. Testing the algorithm with different values for resolution and quorum we get the results

shown in Table 6.2. The results show the (relative) insensitivity of the method with the wavelet or-

der and the significance level, though the change points diagram vary when these parameters change

(as shown in Figures 6.11 and 6.12). This insensitivity is the result of the non-linear thresholding

effect introduced by the alignment detection method through the voting procedure, since it elimi-

nates almost all the spurious points, while keeping the true changes. The resolution parameter has

a bigger influence; the higher the resolution, the higher the variance of the alignment (see the errors

of 24 samples obtained with the resolution of 200 samples). However, if we plot the relative error

(in percentage, relative to the trace length) of the alignment localization, as shown in Figure 6.13

for values between 5 and 3000, the conclusion is that the method is quite insensible to resolution

changes, at least for the variance change case; this effect can be explained by the special nature of

the trace, where few points can be found in distant positions from the true change position. Finally,

the quorum parameter may limit the detection capabilities of the method when a high resolution is

used; see the cases when no alignment is detected because the dispersion of the five closest points

are bigger than the required resolution. From the data we conclude that quorums of 3-4 points, and
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Figure 6.11: detected change points when the DWT-ICSS algorithm is applied to the trace with a variance

change, using db1 wavelet, for the 95% (left) and 99% (right) significance level.

Figure 6.12: The detected change points when the DWT-ICSS algorithm is applied to the trace with a

variance change, at the 99% significance level, using db2 (left) and db3 (right).

Figure 6.13: Relative error percentage as a function of the resolution of the Hough transform, for the

DWT-ICSS analysis (db1, 99% significance level) of a trace with a variance change.
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quorum (votes) q=3 q=5

resolution (samples) r = 5 r = 20 r = 200 r = 5 r = 20 r = 200

95%, db1
alignments 131073 131073 131097 131073 131073 131097

absolute error 0 samples 0 samples 24 samples 0 samples 0 samples 24 samples

99%, db1
alignments 131073 131073 131097 131073 131073 131097

absolute error 0 samples 0 samples 24 samples 0 samples 0 samples 24 samples

99%, db2
alignments 131072 131072 131084 none none 131084

absolute error 1 sample 1 sample 11 samples 11 samples

99%, db3
alignments 131071 131070 131078 none 131070 131078

absolute error 2 samples 3 samples 5 samples 3 samples 5 samples

99%, db4
alignments none 131069 131074 none none 131074

absolute error 4 samples 1 sample 1 sample

Table 6.2: Results of the alignment procedure applied to the DWT-ICSS analysis of an FGN trace with a

variance change. The alignments positions and its absolute error are shown.

high resolution (around 5 samples) are appropriate for the variance change case.

6.6.2 DWT-SIC

Figure 6.14 shows the SIC(k) statistic and its associated “corrected” minimum critical value,

applied to the db1 wavelet details. The minimum of the SIC(k) statistic, which is in the middle of

the trace in almost all scales, signals the change position. The results are similar to those found with

the ICSS; even the bias phenomenon at the higher scales j = 11, j = 13 appears again. We could

conclude that the problem is in the wavelet transform, and not in the change detection methods,

but the authors of the change detection methods warn about the bias introduced by the cumulative

sum of squares (not only used by the ICSS, but also by the variance estimation that is part of SIC).

The position of the detected change points by the SIC is plotted in Figure 6.15. As was found in

the ICSS case, the higher the significance level, the less the detected points, though in this case the

two false points at scale 16th remain as valid (though the nonexistence of aligned changes at the

lower scales can give us a hint about its untruth), while a (presumably true) change detected at the

12th scale is lost when the analysis is performed at 99% significance level. The bias phenomenon

at the 11th scale is strong enough to survive the critical level in any situation. Apart from this,

the performance of SIC and ICSS for this trace is similar. We will not extract general conclusions

about the goodness of the algorithms until the statistical test described in the following section.

Regarding the influence of the wavelet order, Figure 6.16 shows the (relative) invariance of the

results with the number of vanishing moments of the chosen wavelet, with a slight improvement in

the alignment of the true change points.

The results from the alignment detection algorithm are shown in Table 6.3. They are similar

to those found in the ICSS case, with a slightly worse performance of the SIC method when the

required quorum is high and the resolution is low.

The results are good, even better than those of the DWT-ICSS method. Regarding the influence

of the resolution, we get similar results to those shown in Figure 6.13, with a maximum error of

0.027%. Again, the single-change nature of the trace explains the results.
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Figure 6.14: SIC(k) statistic applied to the wavelet details of the FGN trace with a variance change,

for j = 1, 2, 3, 4, 8 and 12, using db1 wavelet at the 95% significance level. The associated critical level

SIC(n)− cα is plotted on the horizontal line.

6.7 Application to synthetic traces with changes in the Hurst

parameter

Let us now discuss what happens when the Hurst parameter changes, whereas the mean and the

variance stay constant. For this purpose, we firstly consider a trace of 262144 samples, the first and

the second half of which are given by the fgn05.mat and the fgn09.mat trace, respectively.

6.7.1 DWT-ICSS

As can be seen in Figure 6.17, the change point location is evident at almost every scale, with the

exception of j = 3, due to the blind point phenomenon described in Section 5.5. As outlined in

Section 4.3, a more drastic change in variance results in a higher slope (or, equivalently, in a higher

peak) for Dj(k). This can be easily checked by looking at Figure 6.18: as in the variance change

case, the change point is located at the peaks (absolute maxima) of the ICSS statistic.

Figures 6.19, 6.20 and 6.21 show the detected changes for a set of different configurations of the

significance level and the mother wavelet. What we can see from these diagrams is that the changes

at scales j = 1 . . . 3 are negative; i.e., the left side of the trace has a bigger variance than the right

side. The situation is the opposite for the higher scales (j > 4). This is the situation shown in

Figure 5.7. Above scale 13 the smoothing effect of the DWT makes the ICSS unable to find the

changes. All the detected changes for j ≤ 10 are quite well located, with the exception of scale

j = 3 (which corresponds to the “blind point” phenomenon illustrated in Section 5.5 and Figure
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Figure 6.15: Detected change points when the DWT-SIC algorithm is applied to the trace with a variance

change, using db1 wavelet, for the 95% and 99% significance level (left and right, respectively).

Figure 6.16: Detected change points when the DWT-SIC algorithm is applied to the trace with a variance

change, at the 99% significance level, using db2 and db3 wavelets (left and right, respectively).

quorum (votes) q=3 q=5

resolution (samples) r = 5 r = 20 r = 200 r = 5 r = 20 r = 200

95%, db1
alignments 131073 131073 131089 none none 131089

absolute error 0 samples 0 samples 16 samples 16 samples

99%, db1
alignments 131073 131073 131091 none none 131091

absolute error 0 samples 0 samples 18 samples none 18 samples

99%, db2
alignments 131072 131069 131088 none 131069 131088

absolute error 1 sample 4 samples 15 samples 4 samples 15 samples

99%, db3
alignments 131072 131070 131084 none 131070 131084

absolute error 1 sample 3 samples 11 samples 3 samples 11 samples

99%, db4
alignments none 131068 131070 none none 131070

absolute error 5 samples 3 samples 3 samples

Table 6.3: Results of the alignment procedure applied to the DWT-SIC analysis of an FGN trace with a

variance change.
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Figure 6.17: DWT detail coefficients of the trace with a Hurst parameter change (0.5 → 0.9), for j =

1, 2, 3, 4, 6 and 8, using db1 wavelet. The change point is located in the middle of the series, at t1 = 131072.

Figure 6.18: CSS statistic applied to the DWT detail coefficients of the trace with a Hurst parameter

change (0.5 → 0.9).
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Figure 6.19: Detected change points when the DWT-ICSS is applied to the trace with a Hurst parameter

change (0.5 → 0.9), using db1 wavelet, at the 95% significance level. Left : the position of the change points.

Right : size and sign of the detected variance change.

Figure 6.20: Detected change points when the DWT-ICSS is applied to the trace with a Hurst parameter

change (0.5 → 0.9), using db1 wavelet, at the 99% significance level. Left : the position of the change points.

Right : size and sign of the detected variance change.

Figure 6.21: Detected change points when the DWT-ICSS is applied to the trace with a Hurst parameter

change (0.5 → 0.9), using db3 wavelet, at the 99% significance level. Left : the position of the change points.

Right : size and sign of the detected variance change.
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5.7) and the dispersion found at the higher scales (specifically at scales 9, 11 and 13), which can be

explained as a collateral effect of the smoothing property of the DWT at the lower frequencies.

When the analysis is performed at the 95% significance level (Figure 6.19), the results do not

change too much with respect to the 99% case, with the exception of an almost imperceptible

false change point at scale j = 7 located around position k = 190000, possibly caused by a local

fluctuation of variance that is big enough to exceed the critical value, and the detection of a change

point at scale 14.

Finally, performing the analysis with a different wavelet (in this case, db3) at the 99% significance

level, we get the results shown in Figure 6.21. The main differences are the false change points

detected at the beginning of the trace for the higher scales, which are a product of the boundary

effects of the transform; some spurious changes at the second scale; and finally the bias introduced

by the ICSS in the “true” change point at the higher scales. The longer filter length of the higher

order wavelet mother introduces a slightly higher correlation; this, combined with the boundary

effects, fools the ICSS. But it must be emphasized that the true changes are still well located, at

least at the lower scales.

Regarding the alignment detection algorithm, we get the results shown in Table 6.4. The results

are slightly worse than those found for the variance change case, due to the higher dispersion of

change points around the blind zone (caused by the low variance ratios) and on the higher scales

(where the smoothing effect of the transform is stronger). However, with a 200-sample resolution

we catch the change point in almost every situation. We conclude that a Hurst parameter change

needs a more favorable combination of quorum and resolution; q = 3 − 5 changes and r ≥ 200

samples seem a good choice.

quorum (votes) q=3 q=5

resolution (samples) r = 5 r = 20 r = 200 r = 5 r = 20 r = 200

95%, db1
alignments none none 131087 none none 131087

absolute error 13 samples 13 samples

99%, db1
alignments none none 131087 none none 131087

absolute error 13 samples 13 samples

99%, db2
alignments none none 131050 none none 131050

absolute error none 23 samples 23 samples

99%, db3
alignments 131072 131073 131073 none none none

absolute error 1 sample 0 samples 0 samples

99%, db4
alignments none none 131049 none none 131049

absolute error none 24 samples 24 samples

Table 6.4: Results of the alignment procedure applied to the DWT-ICSS analysis of the trace with a Hurst

parameter change (0.5 → 0.9).

6.7.2 DWT-SIC

Figure 6.22 shows the detected change points when the SIC statistic is used as a change point

detector, for the H = 0.5 → H = 0.9 transition case using db1 wavelet at the 99% significance

level, while Figure 6.23 repeats the analysis using db3 wavelet. In both cases the results are much
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Figure 6.22: Detected change points when the DWT-SIC is applied to the trace with a Hurst parameter

change (0.5 → 0.9), using db1 wavelet, at the 99% significance level. Left : the position of the change points.

Right : size and sign of the detected variance change.

Figure 6.23: The detected change points when the DWT-SIC is applied to the trace with a Hurst parameter

change (0.5 → 0.9), using db3 wavelet, at the 99% significance level. Left : the position of the change points.

Right : size and sign of the detected variance change.

quorum (votes) q=3 q=5

resolution (samples) r = 5 r = 20 r = 200 r = 5 r = 20 r = 200

99%, db1
alignments 131072 131072 131073 131072 131072 131073

absolute error 1 sample 1 sample 0 samples 1 sample 1 sample 0 samples

99%, db2
alignments 131073 131073 131078 131073 131073 131078

absolute error 0 samples 0 samples 5 samples 0 samples 0 samples 5 samples

99%, db3
alignments 131072 131073 131074 131072 131073 131074

absolute error 1 sample 0 samples 1 sample 1 sample 0 samples 1 sample

99%, db4
alignments 131073 131073 131081 131073 131073 131081

absolute error 0 samples 0 samples 8 samples 0 samples 0 samples 8 samples

Table 6.5: Results of the alignment procedure applied to the DWT-SIC analysis of the trace with a Hurst

parameter change (0.5 → 0.9).
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better than those given by the ICSS, with a very good alignment for the db1 case, due to a very

low dispersion around the true change. However, the SIC shows the sensitivity to the “blind zone”

at scale j = 3, which is not caused by the variance change detection method but by the input data.

For the db3-based analysis the SIC produce the false points detected at the beginning of the trace

at the higher scales, while at the same scales the bias phenomenon does not appear. We conclude

that db2 and db3 offer a good trade-off between accuracy of the detected changes and amount of

spurious changes, and that the use of higher order wavelets should be avoided unless necessary for

wiping out polynomial trends.

The alignment detection algorithm (Table 6.5) returns better results than those obtained with

DWT-ICSS, as was expected from the good change alignment. SIC seems to be more accurate in

the localization of each change point, and its alignment is therefore easier to find, even at very fine

resolutions (higher scales). Even at very high resolutions (5 samples) and high quorum (5 samples),

the method performs very well.

6.7.3 Empirical assessment of the power of DWT-ICSS when the Hurst

parameter changes

The previous examples were useful for illustrating how the algorithms work and extracting some

conclusions about the parameters used in the analysis, but we need a statistically meaningful

analysis. In order to empirically assess the power of the procedure, we generated 1000 independent

realizations of 262144 samples with H = 0.5 and H = 0.9 in the first and second half of the trace,

respectively. The realizations are the same for all the results presented in this Section (for the

DWT-ICSS method) and in Section 6.7.4 (for the DWT-SIC method), which allows us to perform

a fair comparison.

The analysis was performed with DWT-ICSS using db1 wavelet at the 95% and 99% significance

level, for j = 1 . . . 17. Figures 6.24 and 6.25 show the histograms of some scales (j = 1 and j = 2

for being the most populated, j = 3 for being the blind point, j = 4, 6 and 8 as representatives of

the higher scales) for the ICSS case. Tables 6.6 and 6.7 show the results obtained. For each scale,

we include the true change position, the positions that are located in a (approximately) ±0.5%

deviation from the true change point, the total number of detected change points, the “good”

changes in the ±0.5% around the true change, its percentage (relative to the total number of

detected changes), the mean of the detected change points, and the corrected mean of the “good”

change points. Table 6.8 includes the results for a 99% significance level, done with db3.

The main conclusions extracted from the data are:

• The total amount of detected changes (per scale) seems to be quite stable for the scales up

to j = 13 (around 1100 for the 95% significance level case and db1, around 1020 for the 99%

db1 case). For higher scales, it suddenly drops to very low values and goes to zero. For the

99% db3 case, the total number is even higher for scales 9 − 13, due to the spurious points

introduced at those scales at the beginning of the trace (the same effect described in Sections
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Figure 6.24: Histograms of the detected change points when the DWT-ICSS (with db1) is applied to 1000

independent realizations whose H parameter changes from 0.5 to 0.9 in the middle of the series, analyzed

at the 95% significance level.

Figure 6.25: Histograms of the detected change points when the DWT-ICSS (with db1) is applied to 1000

independent realizations whose H parameter changes from 0.5 to 0.9 in the middle of the series, analyzed

at the 99% significance level.
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Scale True change Changes “Good” changes Raw mean Corr. mean

1 65537 (65210,65864) 1106 1000 (90.4%) 65423.2 65528.4

2 32769 (32606,32932) 1109 989 (89.2%) 32817.1 32755.3

3 16385 (16304,16466) 1093 239 (21.9%) 16336.3 16383.7

4 8193 (8153,8233) 1105 726 (65.7%) 8238.2 8196.0

5 4097 (4077,4117) 1097 860 (78.4%) 4132.6 4100.1

6 2049 (2039,2059) 1100 827 (75.2%) 2049.7 2050.5

7 1025 (1020,1030) 1083 809 (74.7%) 1034.7 1025.6

8 513 (511,515) 1096 665 (60.7%) 515.2 512.9

9 257 (256,258) 1082 629 (58.1%) 261.1 256.7

10 129 (129) 1059 168 (15.9%) 132.2 129.0

11 65 (65) 1046 159 (15.2%) 67.5 65.0

12 33 (33) 1020 181 (17.7%) 34.6 33.0

13 17 (17) 1018 207 (20.3%) 17.9 17.0

14 9 (9) 985 242 (24.6%) 9.3 9.0

15 5 (5) 80 0 6.4 5.0

16 3 (3) 0 0

17 2 (2) 0 0

Table 6.6: Detected change points at each scale for a trace whose H parameter changes from 0.5 to 0.9 in

the middle of the series, analyzed with the DWT-ICSS (db1) at the 95% significance level.

Scale True change Changes “Good” changes Raw mean Corr. mean

1 65537 (65210,65864) 1022 1000 (97.8%) 65501.0 65528.9

2 32769 (32606,32932) 1016 998 (98.2%) 32798.9 32757.5

3 16385 (16304,16466) 1012 233 (23.0%) 16292.1 16377.1

4 8193 (8153,8233) 1018 747 (73.4%) 8222.9 8197.2

5 4097 (4077,4117) 1019 871 (85.5%) 4105.7 4100.1

6 2049 (2039,2059) 1020 837 (82.1%) 2049.1 2050.6

7 1025 (1020,1030) 1021 808 (79.1%) 1026.0 1025.5

8 513 (511,515) 1025 729 (71.1%) 513.0 512.9

9 257 (256,258) 1023 700 (68.4%) 256.0 256.6

10 129 (129) 1023 190 (18.6%) 128.0 129.0

11 65 (65) 1007 182 (18.1%) 64.0 65.0

12 33 (33) 1007 146 (14.5%) 32.1 33

13 17 (17) 1001 169 (16.9%) 16.3 17

14 9 (9) 215 21 (9.8%) 8.3 9

15 5 (5) 5 0 (0.0%) 7.0 5

16 3 (3) 0 0

17 2 (2) 0 0

Table 6.7: Detected change points at each scale for a trace whose H parameter changes from 0.5 to 0.9 in

the middle of the series, analyzed with the DWT-ICSS (db1) at the 99% significance level.
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Figure 6.26: Histograms of the detected change points when the DWT-ICSS (with db3) is applied to 1000

independent realizations whose H parameter changes from 0.5 to 0.9 in the middle of the series, analyzed

at the 99% significance level.

Scale True change Changes “Good” changes Raw mean Corr. mean

1 65537 (65210,65864) 1025 1000 (97.6%) 65742.3 65529.7

2 32769 (32606,32932) 1019 996 (97.8%) 32667.7 32757.3

3 16385 (16304,16466) 999 217 (21.7%) 16354.2 16386.5

4 8193 (8153,8233) 1014 766 (75.5%) 8208.2 8198.4

5 4097 (4077,4117) 1019 859 (84.3%) 4113.3 4101.2

6 2049 (2039,2059) 1026 834 (81.3%) 2049.7 2052.0

7 1025 (1020,1030) 1025 698 (68.1%) 1027.1 1027.1

8 513 (511,515) 1020 493 (48.3%) 516.9 514.1

9 257 (256,258) 1047 317 (30.3%) 254.0 257.8

10 129 (129) 1147 46 (4.0%) 120.3 129.0

11 65 (65) 1211 18 (1.5%) 58.5 65.0

12 33 (33) 1295 18 (1.4%) 29.4 33.0

13 17 (17) 1139 30 (2.6%) 17.8 17.0

14 9 (9) 279 0 (0.0%) 1.4

15 5 (5) 31 0 (0.0%) 8.8

16 3 (3) 0 0

17 2 (2) 0 0

Table 6.8: Detected change points at each scale for a trace whose H parameter changes from 0.5 to 0.9 in

the middle of the series, analyzed with the DWT-ICSS (db3) at the 99% significance level.



6.7. APPLICATION TO SYNTHETIC TRACES WITH CHANGES IN H 165

Figure 6.27: Histograms of the aligned change points when the DWT-ICSS is applied to 1000 independent

realizations whose H parameter changes from 0.5 to 0.9 (15 scales, resolution=200 samples, quorum=4

changes). Left : db1, 95% significance level. Middle: db1, 99% significance level. Right : db3, 99% significance

level. Note that the x axis has been zoomed on the region 131072± 100.

Figure 6.28: Histograms of the aligned change points when the DWT-ICSS is applied to 1000 independent

realizations whose H parameter changes from 0.5 to 0.9, analyzed with the DWT-ICSS at the 99% signif-

icance level with db1 at different values of resolution (15 scales, quorum=4 changes). Left : resolution=5

samples. Middle: resolution=20 samples. Right : resolution=200 samples.

Figure 6.29: Histograms of the aligned change points when the DWT-ICSS is applied to 1000 independent

realizations whose H parameter changes from 0.5 to 0.9, analyzed with the DWT-ICSS at the 99% signif-

icance level with db1 at different values of quorum (15 scales, resolution=200 samples). Left : quorum=3

changes. Middle: quorum=5 changes. Right : quorum=7 changes.
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95% sign. level 99% sign. level

db1 db3 db1 db3

resol. quorum Total True Total True Total True Total True

5 smpls

3 chg 747 726 (97.2%) 514 506 (98.4%) 659 642 (97.4%) 458 451 (98.3%)

4 chg 494 494 (100%) 245 245 (100%) 399 399 (100%) 208 208 (100%)

5 chg 271 271 (100%) 89 89 (100%) 180 180 (100%) 64 64 (100%)

6 chg 115 115 (100%) 20 20 (100%) 71 71 (100%) 16 16 (100%)

7 chg 45 45 (100%) 5 5 (100%) 20 20 (100%) 4 4 (100%)

20 smpls

3 chg 859 841 (97.9%) 697 666 (98.4%) 787 773 (98.2%) 662 653 (98.6%)

4 chg 615 615 (100%) 418 418 (100%) 536 536 (100%) 369 369 (100%)

5 chg 395 395 (100%) 210 210 (100%) 293 293 (100%) 166 166 (100%)

6 chg 197 197 (100%) 47 47 (100%) 125 125 (100%) 35 35 (100%)

7 chg 70 70 (100%) 12 12 (100%) 41 41 (100%) 11 11 (100%)

200 smpls

3 chg 1001 985 (98.4%) 978 956 (97.8%) 985 967 (98.2%) 972 952 (98.0%)

4 chg 922 919 (99.7%) 864 860 (99.6%) 880 876 (99.5%) 856 851 (99.4%)

5 chg 793 792 (99.9%) 671 671 (100%) 744 743 (99.9%) 632 631 (99.8%)

6 chg 613 613 (100%) 414 414 (100%) 524 524 (100%) 370 370 (100%)

7 chg 381 381 (100%) 191 191 (100%) 274 274 (100%) 168 168 (100%)

Table 6.9: Detected aligned changes for a trace whose H parameter changes from 0.5 to 0.9, analyzed with

the DWT-ICSS. The true changes are defined as those around ± resolution/2 positions around the true

change position.

6.7.1 and 6.7.2), probably due to the residual correlation introduced by the longer wavelet at

those scales.

• Regarding the true changes, for the db1 cases its number decreases slowly from around 1000

for the first scale, and remains high until j = 9 (700 for 99%, 629 for 95%); for j = 10 and

above, the number rapidly decreases and falls to zero in a few scales. For the db3, the drop

starts at a lower scale (j = 8) and goes faster to zero. Therefore, only the scales up to j ≈ 9

are useful for finding the alignments, and the higher the wavelet, the fewer the scales are

useful.

• In general, the 99% significance level analysis returns fewer true and false points (per scale)

than the 95% case, though its goodness (in terms of proximity to the true change point)

is better. Therefore, the higher the significance level, the more precise the location of the

changes. However, the significance cannot be increased arbitrarily, since valid changes can be

taken as false ones. The 99% seems to offer a good performance trade-off.

• As the scale j increases, fewer true points per scale are detected, due to the bias phenomenon

that disperses the points around the true position. This can be seen in the histogram of scale

j = 12.

• Scale j = 3 is an exception in several ways: though the number of total detected changes

is similar to that found in other scales, its “trueness” is far under the results found for its

neighbors j = 2 and j = 4, and its histogram is clearly more dispersed. This is the result of

the blind zone phenomenon4.

4Recall that we call blind zone those scales where the variances are similar at both sides of the change point.
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• The higher scales suffer from a positive bias that worsens when j increases (compare the

histograms of j = 8 and j = 12). The (relatively) few points found at the higher scales and

the alignment procedure will soften this effect.

• For both cases of significance, the raw mean obtained by averaging all the detected change

points does a fair job and is quite approximate to the true change position. The corrected

mean performs even better. The use of an algorithm capable of clustering the points in terms

of their alignment would have a similar behavior, and therefore could improve the results.

This algorithm will be presented in Section 5.6.

Finally, the results obtained with the clustering and alignment algorithm are shown in Figures

6.27, 6.28, and 6.29, and Table 6.9. In the latter the true changes are defined as those around ±
resolution/2 positions around the true change position5. Three different analyses were performed

by changing the wavelet (db1, db3), the significance level (95%, 99%), the resolution (5, 20, and

200 samples), and the quorum (3, 4 or 5 aligned changes).

• Regarding the significance level, the 95% case returns the best results, in terms of total changes

and true changes, though some of them may be spurious or repeated changes. From the

experience obtained with our previous experiments, we prefer choosing the 99% significance

level.

• Regarding the wavelet, db1 returns more total detected changes than db3, due to the smooth-

ing effect of the latter. The shorter wavelet is also better at the number of true changes and

its percentage, probably due to the higher number of spurious changes detected by db3.

• The higher the resolution, the more total and true changes are detected, as expected, while

the opposite happens with the quorum, which can make the change detection drop to near

zero.

• A good trade-off was found for the following combination of parameters: 99%, resolution=200

samples, quorum=4 changes. For the db1 wavelet this combination detects 876 true changes

out of 1000, more than 85% of the true change points, while keeping good selectivity against

false changes (only four more points were found outside the ±50 samples region) and high

exigency (alignment of 4 changes across scales6). For the db3 case (useful in case there is some

linear or parabolic trend superimposed in the data) we obtained slightly worse results, but

still over 85% of the true change points.

We now repeat the experiment with a less abrupt H parameter change, where the first segment

has H = 0.7, and the second one H = 0.8. The LogScale Diagrams for two such traces are shown

in Figure 6.30, from which we can expect that scales j = 3 and j = 4 are the “blind zones”,

5131072 ± 2 positions for the case of resolution=5, ±10 positions for resolution=20, and ±100 positions for

resolution=200.
6Recall that the tests performed with pure FGN traces never showed more than 2 aligned points across scales.
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Figure 6.30: Variance distribution at each scale for two FGN traces with scaling parameters H = 0.7 and

H = 0.8.

and that the variance changes are much less important than those found at each scale for the

H = 0.5 → 0.9 case (recall Figure 5.7). The proximity of the variances even at the higher scales

(where the regression lines are more distant) will make the variance change detection algorithm

return worse results. The results of the 1000 independent runs at 99% significance level are shown

in Figure 6.31 and Table 6.10. As expected, scales 3 and 4 present very disperse histograms, and

this phenomenon appears even at the higher scales. This redounds in a lower empirical power of the

“good” change points, though the total number of detected changes is comparable to the 0.5− 0.9

case.

The results obtained with the clustering and alignment algorithm are listed in Table 6.11. Though

compared with the H = 0.5 → 0.9 the amount of detected changes was expected to drop, the

fall is very important, even for the highest values of resolution. That is why we extended our

analysis to resolutions of 1000, 2000 and 5000 samples. Applying the same reasonings we used for

the H = 0.5 → 0.9 case, we select the following combination of parameters: 99%, resolution=5000

samples, quorum=4 changes. With db1 this combination detects 929 true changes out of 1000 (more

than 90% of the true change points), maintaining the selectivity against false changes (only 16 more

point were found), while the db3 analysis performs even a bit better, with 960 true changes and

only 17 false changes. We would probably lower the resolution to a value of 3500 or 4000 samples

and still get more than 85% of the changes.

An important conclusion for our method is that we face a trade-off between the granularity of

the changes of the Hurst parameter and the time resolution at which we can locate the change. An

abrupt change of H (0.5 → 0.9) may be located with an accuracy of 200 samples, while a smoother

one (0.7 → 0.8) needs at least 4000 samples to be detected. In the experiments with real traces,

5000 samples is the typical resolution we will use.
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Figure 6.31: Histograms of the detected change points when the DWT-ICSS (with db1) is applied to 1000

independent realizations whose H parameter changes from 0.7 to 0.8 in the middle of the series, analyzed

at the 95% significance level.

Scale True change Changes “Good” changes Raw mean Corr. mean

1 65537 (65210,65864) 1028 981 (95.4%) 65566.4 65516.6

2 32769 (32606,32932) 1017 676 (66.5%) 32824.9 32761.4

3 16385 (16304,16466) 590 48 (8.1%) 16198.0 16386.3

4 8193 (8153,8233) 909 94 (10.3%) 8311.1 8197.2

5 4097 (4077,4117) 1021 277 (27.1%) 4133.7 4097.6

6 2049 (2039,2059) 1014 301 (29.7%) 2077.2 2049.6

7 1025 (1020,1030) 1011 331 (32.7%) 1039.7 1025.3

8 513 (511,515) 1026 246 (24.0%) 523.7 512.9

9 257 (256,258) 1008 261 (25.9%) 264.3 256.8

10 129 (129) 1002 93 (9.3%) 134.4 129.0

11 65 (65) 948 111 (18.1%) 69.7 65.0

12 33 (33) 578 72 (12.5%) 36.6 33

13 17 (17) 114 7 (6.1%) 20.6 17

14 9 (9) 10 0 (0.0%) 13.0 9

15 5 (5) 0 0

16 3 (3) 0 0

17 2 (2) 0 0

Table 6.10: Detected change points at each scale for a trace whose H parameter changes from 0.7 to 0.8 in

the middle of the series, analyzed with the DWT-ICSS (db1) at the 99% significance level.
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Figure 6.32: Histograms of the detected change points when the DWT-SIC (with db1) is applied to 1000

independent realizations whose H parameter changes from 0.5 to 0.9 in the middle of the series, analyzed

at the 99% significance level.

Figure 6.33: Histograms of the detected change points when the DWT-SIC (with db3) is applied to 1000

independent realizations whose H parameter changes from 0.5 to 0.9 in the middle of the series, analyzed

at the 99% significance level.
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95% sign. level 99% sign. level

db1 db3 db1 db3

resol. quorum Total True Total True Total True Total True

5 smpls

3 chg 55 47 (85.4%) 27 27 (100%) 40 32 (80.0%) 28 27 (96.4%)

4 chg 8 8 (100%) 5 5 (100%) 4 4 (100%) 4 4 (100%)

5 chg 2 2 (100%) 1 1 (100%) 0 0 0 0

6 chg 0 0 0 0 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

20 smpls

3 chg 83 75 (90.3%) 47 47 (100%) 52 44 (84.6%) 42 41 (97.6%)

4 chg 11 11 (100%) 6 6 (100%) 6 6 (100%) 5 5 (100%)

5 chg 3 3 (100%) 1 1 (100%) 0 0 0 0

6 chg 0 0 1 1 (100%) 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

200 smpls

3 chg 306 276 (90.2%) 252 210 (83.3%) 236 208 (88.1%) 240 212 (88.3%)

4 chg 82 82 (100%) 58 55 (94.8%) 55 53 (93.0%) 64 64 (100%)

5 chg 18 18 (100%) 15 15 (100%) 10 10 (100%) 11 11 (100%)

6 chg 5 5 (100%) 1 1 (100%) 0 0 4 4 (100%)

7 chg 0 0 1 1 (100%) 0 0 0 0

1000 smpls

3 chg 748 611 (81.7%) 707 573 (81.0%) 692 564 (81.5%) 689 554 (80.4%)

4 chg 366 335 (91.5%) 322 293 (91.0%) 291 260 (89.3%) 285 262 (91.9%)

5 chg 133 128 (96.2%) 109 103 (94.5%) 98 90 (91.8%) 78 76 (97.4%)

6 chg 37 36 (97.3%) 35 34 (97.1%) 25 24 (96.0%) 16 16 (100%)

7 chg 15 15 (100%) 5 5 (100%) 5 4 (80.0%) 2 2 (100%)

5000 smpls

3 chg 1012 966 (95.5%) 1016 970 (95.5%) 1012 964 (95.3%) 1011 979 (96.8%)

4 chg 972 945 (97.2%) 980 958 (97.8%) 956 929 (97.2%) 977 960 (98.3%)

5 chg 860 850 (98.8%) 886 878 (99.1%) 833 823 (98.8%) 860 857 (99.7%)

6 chg 649 645 (99.4%) 683 681 (99.7%) 606 606 (100%) 626 625 (99.8%)

7 chg 397 397 (100%) 427 426 (99.7%) 360 360 (100%) 362 362 (100%)

10000 smpls

3 chg 1025 994 (97.0%) 1030 999 (97.0%) 1011 995 (98.4%) 1016 994 (97.8%)

4 chg 1000 994 (99.4%) 1001 998 (99.7%) 999 993 (99.4%) 1000 993 (99.3%)

5 chg 987 983 (99.6%) 983 981 (99.8%) 977 975 (99.8%) 974 970 (99.6%)

6 chg 930 927 (99.7%) 918 917 (99.9%) 898 897 (99.9%) 884 882 (99.8%)

7 chg 783 782 (99.9%) 766 766 (100%) 716 716 (100%) 723 723 (100%)

Table 6.11: Detected aligned changes for a trace whose H parameter changes from 0.7 to 0.8, analyzed

with the DWT-ICSS. The true changes are defined as those around ± resolution/2 positions around the

true change position.

6.7.4 Empirical assessment of the power of DWT-SIC when the Hurst

parameter changes

For the DWT-SIC case, we have repeated the experiment with 1000 realizations of the Hurst

parameter change from H = 0.5 to H = 0.9. The results are shown in Figure 6.32 and Table 6.12

for db1 at the 99% significance level, and in Figure 6.33 and Table 6.13 for db3, also at the 99%

significance level. Finally, the results obtained with the clustering and alignment algorithm are

shown in Table 6.14.

The main conclusions extracted from the data are:

• The total number of detected changes is, at the lower and middle scales (under j = 12), much

closer to the ideal value (1000) than what was found for DWT-ICSS even in its best case

(99% significance value). Therefore, it seems that DWT-SIC is less prone to false points, for

both cases of the mother wavelet.
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Scale True change Changes “Good” changes Raw mean Corr. mean

1 65537 (65210,65864) 1005 1002(99.7%) 65626.7 65534.2

2 32769 (32606,32932) 1001 998 (99.7%) 32764.0 32764.1

3 16385 (16304,16466) 938 226 (24.1%) 16406.6 16382.8

4 8193 (8153,8233) 1001 747 (74.6%) 8199.3 8194.9

5 4097 (4077,4117) 1001 942 (94.1%) 4095.2 4098.1

6 2049 (2039,2059) 1001 953 (95.2%) 2049.0 2049.0

7 1025 (1020,1030) 1001 958 (95.7%) 1024.7 1024.6

8 513 (511,515) 1001 894 (89.3%) 512.2 512.4

9 257 (256,258) 1002 880 (87.8%) 255.9 256.4

10 129 (129) 1001 161 (16.1%) 128.3 129.0

11 65 (65) 1000 145 (14.5%) 64.2 65.0

12 33 (33) 1013 138 (13.6%) 32.2 33.0

13 17 (17) 977 152 (15.8%) 16.3 17.0

14 9 (9) 425 59 (13.9%) 8.3 9.0

15 5 (5) 44 4 (11.4%) 3.8 5.0

16 3 (3) 1577 510 (32.3%) 2.2 3.0

17 2 (2) 0 0

Table 6.12: Detected change points at each scale for a trace whose H parameter changes from 0.5 to 0.9 in

the middle of the series, analyzed with the DWT-SIC (db1) at the 99% significance level.

Scale True change Changes “Good” changes Raw mean Corr. mean

1 65537 (65210,65864) 1004 1001(99.7%) 65534.1 65535.1

2 32769 (32606,32932) 1006 999 (99.3%) 32897.9 32767.4

3 16385 (16304,16466) 928 214 (23.1%) 16379.0 16385.2

4 8193 (8153,8233) 1004 789 (78.6%) 8200.1 8196.6

5 4097 (4077,4117) 1005 938 (93.3%) 4086.7 4099.2

6 2049 (2039,2059) 1002 951 (94.9%) 2049.8 2050.6

7 1025 (1020,1030) 1008 943 (93.3%) 1019.4 1026.2

8 513 (511,515) 1043 843 (80.8%) 494.9 513.6

9 257 (256,258) 1166 753 (64.6%) 221.6 257.4

10 129 (129) 1502 403 (26.8%) 88.6 129.0

11 65 (65) 1807 433 (24.0%) 37.7 65.0

12 33 (33) 2020 397 (19.7%) 18.7 33.0

13 17 (17) 1069 268 (25.1%) 14.4 17.0

14 9 (9) 263 66 (25.1%) 11.2 9.0

15 5 (5) 62 5 (8.1%) 6.9 5.0

16 3 (3) 43 6 (14.0%) 3.95 3.0

17 2 (2) 3159 335 (14.0%) 2.9 2.0

Table 6.13: Detected change points at each scale for a trace whose H parameter changes from 0.5 to 0.9 in

the middle of the series, analyzed with the DWT-SIC (db3) at the 99% significance level.
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95% sign. level 99% sign. level

db1 db3 db1 db3

resol. quorum Total True Total True Total True Total True

5 smpls

3 chg 994 992 (99.8%) 714 707 (99.0%) 982 981 (99.9%) 666 663 (99.5%)

4 chg 955 955 (100%) 509 509 (100%) 936 936 (100%) 428 428 (100%)

5 chg 848 848 (100%) 282 282 (100%) 795 795 (100%) 199 199 (100%)

6 chg 638 638 (100%) 129 129 (100%) 544 544 (100%) 91 91 (100%)

7 chg 415 415 (100%) 37 37 (100%) 303 303 (100%) 28 28 (100%)

20 smpls

3 chg 999 997 (99.8%) 845 835 (98.8%) 993 993 (100%) 805 800 (99.4%)

4 chg 979 979 (100%) 658 657 (99.8%) 966 966 (100%) 602 602 (100%)

5 chg 915 915 (100%) 446 446 (100%) 877 877 (100%) 369 369 (100%)

6 chg 765 765 (100%) 240 240 (100%) 685 685 (100%) 182 182 (100%)

7 chg 553 553 (100%) 110 110 (100%) 446 446 (100%) 68 68 (100%)

200 smpls

3 chg 1003 1000 (99.7%) 1008 972 (96.4%) 1000 1000 (100%) 997 959 (96.1%)

4 chg 999 998 (99.9%) 938 928 (98.9%) 998 998 (99.5%) 945 928 (98.2%)

5 chg 998 998 (100%) 848 845 (99.6%) 991 991 (99.9%) 814 812 (99.8%)

6 chg 973 973 (100%) 667 666 (99.9%) 961 961 (100%) 626 626 (100%)

7 chg 898 898 (100%) 462 461 (99.8%) 849 849 (100%) 406 406 (100%)

Table 6.14: Detected aligned changes for a trace whose H parameter changes from 0.5 to 0.9, analyzed

with the DWT-SIC. The true changes are defined as those around ± resolution/2 positions around the true

change position.

• The number of “good” change points is also slightly better than in the DWT-ICSS case.

Furthermore, DWT-SIC keeps a very good quantity until a much more higher scale (886 for

j = 9 with db1) than DWT-ICSS (780 for j = 9 with db1).

• For scales above j = 9, the results fall abruptly into a poor performance region, similar to

what was found for the DWT-ICSS method.

• Regarding the wavelet order, db3 exhibits a similar behavior to that seen in the DWT-ICSS

case. We obtain similar results to what was found for DWT-SIC and db1 at the lower scales,

while for 10 ≤ j ≤ 13, a lot of false points at the beginning of the trace makes the total

number of detected changes increase spectacularly, though few of them are true changes.

• Regarding the alignment detection procedure, the results for SIC are better than those found

with ICSS, for all the combinations of parameters.

– 85% of valid changes at the 99% significance level, with db1 and 4 aligned points, is

attained even at the resolution of samples. It is, therefore, much more precise than the

DWT-ICSS method. Even with db3 one detects more changes for the same combination

of parameters.

– For the H = 0.7 → 0.8 case the results shown in Table 6.15 are somewhat contradictory,

showing a worse performance of DWT-SIC, though the 85% criterion is attained at more

or less the same resolution as the DWT-ICSS case (around 3500-4000).

We conclude that the DWT-SIC performs better than the DWT-ICSS method for the more

abrupt H changes, and vice versa. We hypothesize that the cause for this behavior is the implicit

difference in the significance values of the SIC and ICSS methods. We saw in the previous examples
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95% sign. level 99% sign. level

db1 db3 db1 db3

resol. quorum Total True Total True Total True Total True

5 smpls

3 chg 29 26 (89.7%) 30 30 (100%) 14 11 (78.6%) 12 12 (100%)

4 chg 5 5 (100%) 3 3 (100%) 0 0 1 1 (100%)

5 chg 1 1 (100%) 0 0 0 0 0 0

6 chg 0 0 0 0 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

20 smpls

3 chg 59 53 (89.8%) 55 47 (85.5%) 24 20 (83.3%) 29 27 (93.1%)

4 chg 8 7 (87.5%) 9 8 (88.9%) 5 5 (100%) 2 2 (100%)

5 chg 1 1 (100%) 1 1 (100%) 0 0 1 1 (100%)

6 chg 0 0 0 0 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

200 smpls

3 chg 275 224 (81.5%) 264 217 (82.2%) 187 157 (84.0%) 195 173 (88.7%)

4 chg 73 67 (91.8%) 73 67 (91.8%) 34 30 (88.2%) 41 38 (92.7%)

5 chg 16 14 (87.5%) 11 9 (81.8%) 8 7 (87.5%) 5 5 (100%)

6 chg 4 3 (75.0%) 2 2 (100%) 0 0 1 1 (100%)

7 chg 0 0 1 1 (100%) 0 0 1 1 (100%)

1000 smpls

3 chg 741 622 (83.9%) 751 565 (75.2%) 616 508 (82.5%) 633 522 (82.5%)

4 chg 336 307 (91.4%) 322 276 (85.7%) 243 219 (90.1%) 253 222 (87.8%)

5 chg 116 114 (98.3%) 101 96 (89.7%) 62 58 (93.5%) 72 68 (94.4%)

6 chg 26 26 (100%) 34 32 (94.1%) 11 10 (90.9%) 15 14 (93.3%)

7 chg 5 5 (100%) 4 4 (100%) 2 2 (100.0%) 1 1 (100%)

5000 smpls

3 chg 1008 947 (93.9%) 1094 965 (88.2%) 999 961 (96.2%) 1008 971 (96.3%)

4 chg 958 926 (96.7%) 1005 947 (94.2%) 936 919 (98.2%) 952 930 (97.7%)

5 chg 826 819 (99.2%) 853 835 (97.9%) 767 763 (99.5%) 780 776 (99.5%)

6 chg 603 601 (99.7%) 621 6815 (99.0%) 468 467 (99.8%) 500 499 (99.8%)

7 chg 339 339 (100%) 349 348 (99.7%) 230 230 (100%) 213 213 (100%)

10000 smpls

3 chg 1017 986 (97.0%) 1117 992 (88.8%) 1000 990 (99.0%) 1014 992 (97.8%)

4 chg 998 983 (98.5%) 1038 990 (95.4%) 997 987 (99.0%) 998 986 (98.8%)

5 chg 962 951 (99.6%) 980 959 (97.9%) 927 925 (99.8%) 925 921 (99.6%)

6 chg 873 870 (99.7%) 846 836 (98.8%) 748 747 (99.9%) 729 728 (99.9%)

7 chg 679 679 (100%) 628 624 (99.4%) 469 468 (99.8%) 461 460 (99.8%)

Table 6.15: Detected aligned changes for a trace whose H parameter changes from 0.7 to 0.8, analyzed

with the DWT-SIC. The true changes are defined as those around ± resolution/2 positions around the true

change position.

that for the same significance level, the ICSS returns more points (either “good” or spurious), while

the SIC is more strict. This makes the alignment procedure perform better with SIC when the

Hurst parameter changes are more clear (abrupt), while in the case of the smoother H changes

the ICSS, though it provides not-so-valid points, its number is higher and makes it easier for the

alignment procedure to find positive results.

6.7.5 Traces with multiple Hurst parameter changes

A more elaborate example considers a 131072-samples trace with four segments of FGN, as plotted

in the right side of Figure 5.16. The variance is constant for the entire trace (σ2 = 1). The change

points are located at t1 = 16385, t2 = 32769, and t3 = 98305, dividing the segments with H = 0.9,

H = 0.5, H = 0.7, and H = 0.8. We begin analyzing the trace with the DWT-ICSS algorithm. The

correspondent DWT detail coefficients (using the db1 wavelet family) and CSS statistics at scales

j = 1, . . . , 6 are plotted in Figure 6.34 and Figure 6.35, respectively. An inspection of Figure 6.35
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Figure 6.34: DWT details of the trace with four segments with different Hurst parameter, for j = 1, . . . , 6,

using db1 wavelet. The change points are located at t1 = 16384, t2 = 32768, t3 = 98304, and Hurst

parameter values are H = 0.9 → 0.5 → 0.7 → 0.8. The variance is constant.

Figure 6.35: Absolute value of the CSS statistic, applied to the DWT details coefficients of the trace with

four segments with different Hurst parameter, for j = 1, . . . , 6, using db1 wavelet. The change points are

located at t1 = 16384, t2 = 32768, t3 = 98304, and Hurst parameter values are H = 0.9 → 0.5 → 0.7 → 0.8.

The variance is constant.
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Figure 6.36: Detected change points when the DWT-ICSS is applied to the trace with four segments with

different Hurst parameter, at the 99% significance level. Top left : the position of the change points (db1).

Top right : size and sign of the detected variance change(db1). Bottom left : the position of the change points

(db3). Bottom right : size and sign of the detected variance change(db3)

suggests the following conclusions:

- the first change point is detected as a clear peak at scales j = 1, j = 2, j = 5, j = 6 and as a

local maximum at scale j = 4;

- the second change point is detected as a change of slope at scales j = 1, j = 2, j = 5, and

j = 6, as a clear peak at scale j = 3 and as a local maximum at scales j = 4;

- the third change point is detected as a peak at scales j = 1, j = 2 and j = 6 and as a local

maximum at scales j = 4, j = 5.

We can see the masking effect of the CSS statistic, when the time series have more than one

change point. When the complete ICSS statistic is applied to the trace, we get the results shown
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Figure 6.37: Detected change points when the DWT-SIC is applied to the trace with four segments with

different Hurst parameter, at the 99% significance level. Top left : the position of the change points (db1).

Top right : size and sign of the detected variance change(db1). Bottom left : the position of the change points

(db3). Bottom right : size and sign of the detected variance change(db3)

in Figure 6.36. The first change point (the abrupt one, from H = 0.5 to H = 0.9) is correctly

identified for scales up to j = 10, with the exception of the blind zone at j = 3. The second and

third changes are not as clearly detected, due to their less abrupt nature. However, the mean of

the detected change points is still quite close to the true change point. For the db3-based analysis,

the results are similar, with a slight improvement in the detection of the two first change points (in

terms of quantity of scales and dispersion), and more dispersion for the third (and more smooth)

change.

For the DWT-SIC case, we will only show the diagram of the detected change points at the 99%

significance level, for db1 and db3 (Figure 6.37). The results are similar, with the exception of the

isolated false points at the highest scales (15, 16 and 17). For the db3 case a couple of false points

appear somewhat aligned by chance around k = 79000. The size analysis shows they are of little
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importance, and anyway the alignment procedure will ignore them for quorums above 2.

Table 6.16 shows the results of the alignment procedure. Compared with those obtained in

Sections 6.7.1 and 6.7.2 for single changes, the performance of the algorithms in front of multiple

changes is worse. They need higher resolution or less strict alignment requirements (lower quorum)

in order to detect the changes. The cause for this behavior is the masking effect of the variance

change statistics and the proximity of the changes. That is why we studied the performance of the

algorithms in terms of the separation between changes of H, as shown in the next Section.

quorum (votes) q=3 q=5

resolution (samples) r = 200 r = 1000 r = 5000 r = 200 r = 1000 r = 5000

ICSS 99%, db1

16187 16201 15687 16201 15687

alignments 35748

97840 97776 97776

ICSS 99%, db3

16397 16249 16484 16249 16484

alignments 33126 35157

98295

SIC 99%, db1

16422 16288 15572 16288 15572

alignments 32788 33007 33007 33007 33007

98543 98041 98041

SIC 99%, db3

16395 16248 16293 16248 16293

alignments 33031 33008 33008 33008 33008

98295

Table 6.16: Results of the alignment procedure applied to the DWT-ICSS and DWT-SIC analysis of an

FGN trace with four segments with different values of H.

6.7.6 Empirical assessment of the power of the DWT methods in pres-

ence of multiple H changes

We studied the performance of the DWT-based methods for the case of two H changes (H = 0.5 →
0.9 → 0.5) in terms of the separation of the changes. Tables 6.17 and 6.18 show the results for for

the DWT-ICSS and DWT-SIC with db1, while the DWT-SIC db3 results can be found in Table

6.19. The values with the not apply (n/a) legend correspond to resolutions under or equal to the

value of the separation parameter; in these cases, the same change point would appear as a true

change point in the neighborhood of both change points, and therefore the results are incorrect.

The main conclusions extracted from the data are:

• The performance of the algorithms is very sensitive to the separation between the change

points. For the shorter separations almost no change is detected by the methods. Separations

under 5000 samples are difficult to detect. This can be explained by the fact that each change

is detected across 8 to 10 scales, approximately, as was shown in the previous sections. The

time dispersion created by the downsampling procedure of the DWT at the higher scales

introduces an inaccuracy of 28 to 210 samples in the position of the change alignments. This

causes the minimum separation to be over 1000 samples, at least.
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separation (samples)

1000 5000 10000 50000 100000

resolution quorum 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch

20 samples

3 changes 0 0 0 0 11 19 8 16 10 7

4 changes 0 0 0 0 3 0 0 1 0 0

5 changes 0 0 0 0 0 0 0 0 0 0

200 samples

3 changes 0 0 163 0 84 694 870 748 790 567

4 changes 0 0 25 0 23 441 705 648 505 287

5 changes 0 0 1 0 0 186 440 422 196 77

1000 samples

3 changes n/a n/a 569 284 426 860 995 721 992 984

4 changes n/a n/a 428 210 312 819 995 716 991 979

5 changes n/a n/a 174 110 163 625 985 657 926 913

5000 samples

3 changes n/a n/a n/a n/a 1101 793 1000 997 1000 479

4 changes n/a n/a n/a n/a 1092 793 1000 997 1000 479

5 changes n/a n/a n/a n/a 1077 792 1000 997 1000 479

10000 samples

3 changes n/a n/a n/a n/a n/a n/a 1002 1000 1000 1000

4 changes n/a n/a n/a n/a n/a n/a 1000 1000 1000 1000

5 changes n/a n/a n/a n/a n/a n/a 1000 1000 1000 1000

Table 6.17: Results for the DWT-ICSS method (99% significance level, db1) for a trace with three regions

with different H parameter (H = 0.5 → 0.9 → 0.5), as a function of the length of the central region

(separation). The changes are defined as those around ± resolution/2 positions around the true change.

separation (samples)

1000 5000 10000 50000 100000

resolution quorum 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch

20 samples

3 changes 0 0 0 0 70 73 3 21 8 5

4 changes 0 0 0 0 9 6 0 2 0 0

5 changes 0 0 0 0 1 0 0 0 0 0

200 samples

3 changes 0 0 114 2 279 825 896 819 679 630

4 changes 0 0 15 0 77 596 778 744 584 445

5 changes 0 0 3 0 7 282 511 508 297 142

1000 samples

3 changes n/a n/a 397 299 709 794 980 580 996 942

4 changes n/a n/a 176 175 624 743 980 579 996 942

5 changes n/a n/a 38 57 405 554 975 544 993 908

5000 samples

3 changes n/a n/a n/a n/a 1012 712 1000 1000 1000 941

4 changes n/a n/a n/a n/a 910 709 1000 1000 1000 941

5 changes n/a n/a n/a n/a 746 708 1000 1000 1000 999

10000 samples

3 changes n/a n/a n/a n/a n/a n/a 1000 1001 1000 999

4 changes n/a n/a n/a n/a n/a n/a 1000 1000 1000 999

5 changes n/a n/a n/a n/a n/a n/a 1000 1000 1000 999

Table 6.18: Results for the DWT-SIC method (99% significance level, db1) for a trace with three regions

with different H parameter (H = 0.5 → 0.9 → 0.5), as a function of the length of the central region

(separation). The changes are defined as those around ± resolution/2 positions around the true change.

separation (samples)

1000 5000 10000 50000 100000

resolution quorum 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch 1st ch 2nd ch

20 samples

3 changes 0 0 1 0 0 0 82 43 46 57

4 changes 0 0 0 0 0 0 5 2 0 1

5 changes 0 0 0 0 0 0 0 0 0 0

200 samples

3 changes 0 0 109 6 489 747 908 703 807 615

4 changes 0 0 17 0 197 457 783 472 558 457

5 changes 0 0 2 0 36 197 511 187 267 200

1000 samples

3 changes n/a n/a 383 285 725 830 949 734 998 996

4 changes n/a n/a 181 172 677 763 949 729 998 996

5 changes n/a n/a 52 54 432 508 942 655 997 990

5000 samples

3 changes n/a n/a n/a n/a 1070 453 1000 999 1000 743

4 changes n/a n/a n/a n/a 1010 453 1000 999 1000 743

5 changes n/a n/a n/a n/a 896 453 1000 999 1000 743

10000 samples

3 changes n/a n/a n/a n/a n/a n/a 1000 1001 1000 1000

4 changes n/a n/a n/a n/a n/a n/a 1000 1000 1000 1000

5 changes n/a n/a n/a n/a n/a n/a 1000 1000 1000 1000

Table 6.19: Results for the DWT-SIC method (99% significance level, db3) for a trace with three regions

with different H parameter (H = 0.5 → 0.9 → 0.5), as a function of the length of the central region

(separation). The changes are defined as those around ± resolution/2 positions around the true change.
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• As expected from previous experiments, the increases in quorum lower the change detection

ratios, while the higher the resolution, the more changes are detected.

• For the lower detection ratios, the results for one of the changes seem to be better than or

equal to those found for the other change. This seems to be some kind of masking effect

which mitigates at the higher values of resolution and separation (i.e., the values for which

the number of detected changes approaches the ideal value of 1000).

• The SIC-based method seems to perform slightly better than DWT-ICSS, if we consider the

mean number of detected changes (including both changes) as the merit figure.

• Regarding the influence of the wavelet order in the performance of the SIC method, few

differences are found in the tables.

• We conclude that our methods perform acceptably (in the typical case of 8-10 scales with

aligned changes) for separations above 5000 samples, resolutions in the 1000-5000 samples

range, and quorums of 3-4 changes. .

The previous conclusions apply to pure H changes. In real traces we expect to find simultaneous

changes in the Hurst parameter and the variance is present. That is why we studied this situation

in the following section.

6.8 Analysis of the effect of a simultaneous change of vari-

ance and Hurst parameter

The trace shown in Figure 5.17 (left), composed of four segments with H = 0.5, σ2 = 1, H =

0.9, σ2 = 2, H = 0.9, σ2 = 1, H = 0.5, σ2 = 2, will be analyzed with the DWT-ICSS and the

DWT-SIC in this section. Note that the trace includes two simultaneous changes of variance and

Hurst parameter at k = 32769 and k = 98305 and a variance change at k = 65537. The results

are shown in Figure 6.38 for the DWT-ICSS and in Figure 6.39 for the DWT-SIC case. Table 6.20

shows the results after the alignment procedure.

Why do we try this experiment? The difference from the Hurst change cases already commented

is the opposite or reinforcing effect of both kind of changes (global variance or H) in the relative

changes of the variance at every scale. Comparing the value and size diagrams shown on the right

of the figures, we arrive to the following conclusions:

• The variance changes at the highest scales of the first change (k = 32769) are reinforced due

to the simultaneous increase of H and σ2, while the decrease of variance at the lower scales

due to the H change is compensated by the σ2 increase, almost masking the variance changes

at scales 1 and 2.
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Figure 6.38: Detected change points when the DWT-ICSS is applied to the trace with four segments with

different Hurst parameter, at the 99% significance level. Top left : the position of the change points (db1).

Top right : size and sign of the detected variance change(db1). Bottom left : the position of the change points

(db3). Bottom right : size and sign of the detected variance change(db3)

• The σ2 change at k = 65537 is clearly detected as a decrease in the variance at 6-7 scales.

The changes are limited to fewer scales and have a lower size than those found in Section 6.6

for a more abrupt variance with a ratio of 4, which were detected across 11-12 scales.

• For the second change, the situation is exactly the opposite of the first change. For the higher

scales, the variance decrease due to the H change is compensated by the σ2 increase, with an

interesting effect: the changes of scales 7-11 (or 8-12) disappear due to the smoothing effect

of the DWT, combined with the little size of the changes. Actually, no variance decrease

is detected in the k = 98305 position, though the higher scales should display a decrease.

Therefore the H change is masked and appears as a variance increase with a low variance

change ratio.
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Figure 6.39: Detected change points when the DWT-SIC is applied to the trace with four segments with

different Hurst parameter, at the 99% significance level. Top left : the position of the change points (db1).

Top right : size and sign of the detected variance change(db1). Bottom left : the position of the change points

(db3). Bottom right : size and sign of the detected variance change(db3)

• When the alignment detection method is applied to the change diagrams, the masking effect is

confirmed: the third change is the most difficult to find, and needs a higher value of resolution

in order to be detected. Regarding the comparison between methods, the results are similar,

except for a slightly better behavior for DWT-SIC in the detection of the changes of H.

Though we have not tried the opposite cases (H increase + variance decrease and H decrease +

variance decrease), we expect them to behave as the dual cases of those presented here. Therefore,

we conclude that the simultaneous change of variance and H in a trace can suffer either a masking

or reinforcement effect, depending on the increase/decrease combination, making it easier or more

difficult its detection.
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quorum (votes) q=3 q=5

resolution (samples) r = 200 r = 1000 r = 5000 r = 200 r = 1000 r = 5000

ICSS 99%, db1

32784 32968 32968 32968 32968

alignments 65461 65419 65419 65419 65419

98507 98725 98725

ICSS 99%, db3

33031 32949 32949 32949 32949

alignments 65501 65356 65356 65356 65356

98615 98291 98554

SIC 99%, db1

32780 32826 32826 32780 32826 32826

alignments 65472 65472 65472

98331 98576 98291 98576 98291

SIC 99%, db3

32791 32894 32894 32791 32894 32894

alignments 65515 65476 65476 65515 65476 65476

98615 98834 98834

Table 6.20: Results of the alignment procedure applied to the DWT-ICSS and DWT-SIC analysis of an

FGN trace with two simultaneous changes of variance and Hurst parameter at k = 32769 and k = 98305

and a variance change at k = 65537.

6.9 Application to real traffic traces

Let us now detect the change points of the BC-pAug89 and BC-OctExt traces (described in Sections

3.2.10 and 5.4) with the DWT-based algorithms.

6.9.1 Statistical distribution of the DWT coefficients

We begin our analysis by studying the distribution of the coefficients, as we did with the synthetic

FGN traces in Section 6.3. Figure 6.40 and 6.41 show the histograms and probability plots for the

BC-pAug89 and BC-OctExt traces (aggregated at 10 ms and 1 s, respectively) when analyzed with

db37. For the first trace the distribution is clearly Laplacian at the lowest scale (highest frequency),

but it gets more and more Gaussian-like as the scales increases. This effect is caused by the iterative

filtering of the DWT scheme. The highest scales have been convolved several times with the wavelet

filter, and this seems to soften the distribution and make it converge to normal. For the BC-OctExt

case the effect is not as efficient, since the original trace was much more variable and heavy-tailed

than BC-pAug89, but the smoothing effect can also be seen in the figure.

j = 1 j = 5 j = 10 j = 1 j = 4 j = 8

BC-pAug89 0.34 1.15 1.51 BC-OctExt 0.35 0.38 0.51

Table 6.21: GGD shape parameter of the DWT decomposition of the Bellcore traces.

Table 6.21 presents the estimation of the shape parameter of the distributions shown in the

previous figures. The BC-OctExt trace at all scales and the first scale of BC-pAug89 exhibit a

sharper-than-Laplacian behavior, while the higher scales of the BC-pAug89 trace fall in the zone

between Laplacian and Gaussian. As we will see in the following sections, this will influence the

amount of detected change points at each scale.

7The results obtained with db1 are similar and have been omitted.
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Figure 6.40: Histograms (left) and probability plots for graphical normality testing (right) of the DWT

coefficients of the BC-pAug89 (aggregated at 10 ms) trace when analyzed with db3. From top to bottom,

the analysis for the coefficients at scales j = 1, j = 5 and j = 10.
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Figure 6.41: Histograms (left) and probability plots for graphical normality testing (right) of the DWT

coefficients of the BC-OctExt trace (aggregated at 1 s) when analyzed with db3. From top to bottom, the

analysis for the coefficients at scales j = 1, j = 4 and j = 8.
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6.9.2 DWT-ICSS

BC-pAug89 trace

The results of the DWT-ICSS algorithm are shown in Figure 6.42 for the case of the trace BC-pAug89

(aggregated at 10 ms). The density of change points at the lower scales, caused by their sharper-

than-Laplacian distribution, makes it difficult to obtain conclusions; that is why we will skip the

first or second scales in some of the analyses. We will begin by focusing our attention on some

segments. We selected two of these segments; the ones that comprise the positions (75000−100000)

and (250000 − 275000). The segments of the trace and the results of the analysis are shown in

Figure 6.43. The main conclusions are:

• Some abrupt changes in the traffic volume (approximate positions 80500, 85500, 259000 and

264500, grey lines) are detected as the alignment of change points across scales. These are

examples of a variance change and not only of a mean change, that would pass unawarely.

• Very few of the detected changes belong to scales above 5 or 6, due to the lack of resolution

of the DWT at the higher scales.

• No “pure” changes of the scaling parameter are detected (i.e., alignment of changes with

the positive/negative pattern seen in the experiments with synthetic traces). This is not a

surprise, since real traffic traces are much more complex than synthetic ones. In any case,

changes in traffic volume are known to be related to changes in the scaling parameters of

traffic; in this sense, our algorithm is still valid.

• There are few differences between the db1 and db3 analyses; the clearest alignments are

detected in both cases, with maybe one less aligned change for the higher order wavelet. Real

traffic traces are prone to trends; that is why we will perform the following study with the

db3 wavelet (as suggested by [VA99]) in order to filter linear and parabolic trends.

When the alignment detection method is applied, we get the results shown in Figure 6.44. We

chose the following parameters for the analysis: 99% significance level, db3 wavelet, resolution =

5000 samples and quorum = 4 changes (as suggested by the experiments described in Section 6.7).

The figure shows:

1) The original trace, segmented at the aligned changes.

2) The change point diagram, segmented at the aligned changes.

3) The Hurst parameter estimation in the segments, with its associated confidence 95% intervals

(horizontal lines). The lower scale j1 used for regression has been chosen automatically with

the Chi-squared goodness of fit test described in [VAT03], while the higher scale j2 has been

chosen as the highest among those considered as safe (i.e., with a sufficient number of wavelet

coefficients) by the Matlab implementation of the LogScale Diagram [VA].

4) The Hurst parameter estimation in 32 constant length segments (the same analysis presented

in Section 5.4). The scales for the linear regression have been chosen with the same methods

described in the previous case.
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Figure 6.42: Change points at each scale for the DWT-ICSS analysis of the BC-pAug89 trace (aggregated

at 10 ms) at the 99% significance level, with db1. Top: position of each change point for db1. Middle: Sign

and size of each change point for db1. Bottom: position of each change point for db3.



188 CHAPTER 6. DWT-BASED SEGMENTATION METHODS

Figure 6.43: Change points at each scale for the DWT-ICSS analysis of the BC-pAug89 trace, with db1

wavelet, at the 99% significance level. Left : segment 75000− 100000. Right : segment 250000− 275000.
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5) The variance of each of the segments, together with the associated 95% confidence intervals

(assuming gaussiantity).

6) The mean volume of the original trace, segmented at the aligned changes.

The main conclusions are:

• The segmentation of the change point diagram detects without problems the alignments,

though the dispersion at the lower scales causes some of the alignments to be biased from the

ideal position. The (relatively high) value of the resolution parameter can also contribute to

this effect.

• The time evolution of the Hurst parameter is tracked with very good results: the segments

almost do not overlap their confidence intervals, implying that there is a real H change at

those positions. There are some exceptions such as the segments around k = 250000; in this

case we are detecting a traffic variance change instead of a Hurst parameter change (see later).

• The goodness of our segmenting algorithm is confirmed by the constant length H analysis,

where most of the segments that overlap their confidence intervals correspond to regions

where our segmenting algorithm estimates a constant Hurst parameter. Take the example of

the first 3 constant length segments (with values around H = 0.8), that are considered as a

single segment by our algorithm.

• The values of the Hurst parameter ranges from 0.54 to 0.88 for our segmenting method, while

the constant length method returns values from 0.45 to 0.86. Although the range of H can

seem very high, the trace is actually quite stable and oscillates around the mean value of 0.8,

in agreement with the static analysis presented in Chapter 3 and reported by other authors.

• Though the confidence interval argument does not always hold when comparing the constant

length analysis and our segmenting algorithm, recall that the validity of the constant length

analysis is questionable and can be taken as a first approximation of the real evolution of

the Hurst parameter, because of the arbitrariness of the constant length positions, while our

method has strong physical roots (the multiresolution variance changes).

• The evolution of the variance explains some of the change points that do not exhibit an H

change, such as the aforementioned change at k = 250000. Other examples of segments that

show a variance change while keeping H constant (or almost constant) in 6.44 are the segments

around k = 75000 and k = 160000.

• The opposite situation (changes of the Hurst parameter while the variance remains constant)

is also detected in some segments, such as the change point located at k = 100000 and a

couple of changes around k = 175000.

• The evolution of the traffic volume (or the variance) is not correlated with the behavior of the

Hurst parameter, in contradiction with the results described in [LTWW94] and [BSTW95].
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Figure 6.44: Segmentation of the BC-pAug89 trace, with the ICSS method at 99% significance, with db3,

resolution = 5000, quorum = 4.
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Figure 6.45: Segmentation of the BC-pAug89 trace, with the ICSS method at 99% significance, with db3,

resolution = 5000, quorum = 3. The first scale is ignored.



192 CHAPTER 6. DWT-BASED SEGMENTATION METHODS

Figure 6.46: Segmentation of the BC-pAug89 trace, with the ICSS method at 99% significance, with db3,

resolution = 5000, quorum = 4. The first scale is ignored.
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As has been already mentioned, the lower scales are very noisy in terms of the huge amount of

changes. This increases both the computational load and the alignment bias. That is why we tried

an analysis in which we ignore the first scale and decrease the quorum by one unit; these operations

somewhat compensate their influence, since the lost quorum unit is actually the one given by the

first scale for almost all positions. The results, shown in Figure 6.45, are almost the same as those

obtained for the previous case. Therefore, we conclude that we can safely skip the first or second

scales and still get the same results, with much fewer computations.

Figure 6.46 shows the case where the first scale is ignored and the quorum is maintained as 4.

This would be equivalent to a quorum of 5 changes across all scales. Logically, we obtain a subset

of the change alignments, corresponding to the regions where the variance changes are more abrupt

(and therefore appear at more scales). The variation around the mean value of H = 0.8 is small,

though the variations do exist, as shown by the almost non-overlapping confidence intervals. In

some sense, increasing the quorum means losing details at the zones where the Hurst parameter is

more or less constant, but we do not lose the abrupt H changes (such as the two regions around

k = 30000 with H ≈ 0.5 and k = 250000 with H ≈ 0.7).

BC-OctExt trace

We now analyze the OctExt1s.mat trace aggregated at 1 s, which presents much higher variations

than the BC-pAug89 trace, as shown in Figure 6.47. The amount and size of the detected changes

is higher than in the previous case, due to the higher sharpness of the probability density function.

Regarding the influence of the wavelet, as in the study of the BC-pAug89 trace, the db3 analysis

returns fewer change points than the db1 case (typically one less scale for each aligned change

point). We hypothesize that this effect is caused by the longer support of the db3 wavelet, which

makes the determination of the variance change point less accurate, due to its higher smoothing

effect.

The following parameters were chosen for the analysis: 99% significance level, db3 wavelet,

resolution = 1000 samples and quorum = 5 changes. We tried again to get a variance and Hurst

segmentation whose confidence intervals overlapping is minimized. The first scale is not considered

for the analysis, due to its noisy nature, thus making the real quorum be 6 changes. The results

are shown in Figure 6.48. The trace exhibits a much higher variance of the Hurst parameter, as

was expected from the constant length analysis. The range of variation is between 0.1 and 1.558,

though the sequence stays mainly in the typical 0.5 < H < 1 range. Recall that H > 1 implies

nonstationarity, as can be confirmed by looking at the behavior of the trace. The confidence interval

argument we used in the analysis of the BC-pAug89 trace is more difficult to apply here, due to the

shorter length of the segments, which in turn limits the number of scales available for regression,

which is one of the factors that influence the confidence intervals. In any case, most of the segments

do not overlap their intervals; the cases where this happens belong to either a change of variance

8We considered the values under 0 and above 1.5 as outliers. This was confirmed by the extremely large associated

confidence intervals.



194 CHAPTER 6. DWT-BASED SEGMENTATION METHODS

Figure 6.47: Change points at each scale for the DWT-ICSS analysis of the BC-OctExt trace, with db1

wavelet, at the 99% significance level. Top: position of each change point, with db1. Middle: Sign and size

of each change point. Bottom: position of each change point for db3.
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Figure 6.48: Segmentation of the BC-OctExt trace, with the ICSS method at 99% significance, with db3,

resolution = 1000, quorum = 5. The first scale is ignored.
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Figure 6.49: Segmentation of the BC-OctExt trace, with the ICSS method at 99% significance, with db3,

resolution = 1000, quorum = 6. The first scale is ignored.
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while H is constant (such as the change point located at k ≈ 63000 or the opposite case (see for

example the region from the origin up to around k ≈ 20000, with almost no change of variance but

with a highly variable Hurst parameter). Regarding the connection between traffic load and Hurst

parameter, we again find no correlation between them.

We also tried with a quorum of 6 changes, attempting to simplify the diagram. The results of

Figure 6.49 are not so appealing, since the change diagram is too simplified (for example, the long

regions with H ≈ 1 hide the rich behavior shown in Figure 6.48, with short regions alternating

above and over H = 1). However, the results still include the abrupt falls to H ≈ 0.5 that were

already detected around k = 50000, k = 78000 and k = 115000.

6.9.3 DWT-SIC

BC-pAug89 trace

Figure 6.50 shows the detected change points when using the SIC-based method with db1 and db3.

The results are similar to those obtained with DWT-ICSS, though for some alignments the number

of detected change points is lower; the SIC seems to be more strict than the ICSS. Nevertheless,

the SIC analysis is still able to identify the most important alignments and even enhance them,

such as the clear alignment detected at k = 300000.

Figure 6.51 shows the results for the segmenting procedure with the same combination of param-

eters used in Figure 6.44 (99%, db3, resolution = 5000 samples and quorum = 4 changes). Given

the decrease in the change detection, the segments found are fewer (and longer) than those found

with the ICSS, thus redounding in a simplification of the segmentation diagrams. For example, we

lose the rich behavior of H and the variance detected by the ICSS in the 50000 < k < 100000 region

with multiple changes in 4 aligned change points, that are missed by the SIC (only 3 changes are

detected).

Given the stricter results returned by the SIC method, we tried two approaches: decreasing the

quorum by one unit (Figure 6.52), and lowering the significance level to 95% (Figure 6.53). The

decrease in the quorum returns almost the same results obtained with the ICSS, confirming that

the reduction in the number of change points is almost linear. The other approach returns less

segments (specially in the populated region 50000 < k < 100000), but the clearest alignments are

preserved.

Regarding the influence of the first scale, we repeated the experiment that consists of not con-

sidering the changes at j = 1 and decrease the quorum. The results shown in Figure 6.54 confirm

that the detected alignments do not change from those shown in Figure 6.51.

BC-OctExt trace

The analysis of the BC-OctExt trace seems not to be very affected by the phenomenon mentioned

in the previous paragraphs. When compared with the ICSS, the SIC method provides roughly the
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Figure 6.50: Change points at each scale for the DWT-SIC analysis of the BC-pAug89 trace, with db1

wavelet, at the 99% significance level, with db1. Top: position of each change point. Middle: Sign and size

of each change point for db1. Bottom: position of each change point for db3.
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Figure 6.51: Segmentation of the BC-pAug89 trace, with the SIC method at 99% significance, with db3,

resolution = 5000, quorum = 4.
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Figure 6.52: Segmentation of the BC-pAug89 trace, with the SIC method at 99% significance, with db3,

resolution = 5000, quorum = 3.
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Figure 6.53: Segmentation of the BC-pAug89 trace, with the SIC method at 95% significance, with db3,

resolution = 5000, quorum = 4.
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Figure 6.54: Segmentation of the BC-pAug89 trace, with the SIC method at 99% significance, with db3,

resolution = 5000, quorum = 3. The first scale is ignored.
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Figure 6.55: Change points at each scale for the DWT-SIC analysis of the BC-OctExt trace, with db1

wavelet, at the 99% significance level. Top: position of each change point, with db1. Middle: Sign and size

of each change point. Bottom: position of each change point for db3.
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Figure 6.56: Segmentation of the BC-OctExt trace, with the SIC method at 99% significance, with db3,

resolution = 1000, quorum = 5. The first scale is ignored.
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Figure 6.57: Segmentation of the BC-OctExt trace, with the SIC method at 99% significance, with db3,

resolution = 1000, quorum = 6. The first scale is ignored.
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Figure 6.58: Segmentation of the BC-OctExt trace, with the SIC method at 95% significance, with db3,

resolution = 1000, quorum = 5. The first scale is ignored.
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same change points, as shown in Figure 6.55, though Figures 6.56 and 6.57 show fewer detected

alignments than their ICSS counterparts, though as in the case of BC-pAug89 trace, the more

important alignments are still detected.

For the sake of completeness, we also include the results for the 95% significance level analysis

with quorum = 5 changes, shown in Figure 6.56, from which we obtain similar results to those given

by the ICSS method at the 99% significance and a quorum of 5 changes.

This section has presented the results of the segmentation algorithms when applied to a couple

of real traffic traces which are representative of two different situations with moderate and extreme

changes of variance and Hurst parameter. Regarding the behavior of the methods, our main con-

clusion is that in order to compare fairly the ICSS and the SIC methods for real traces, we have to

either lower the quorum in one unit for the SIC study, or to lower the significance level from 99%

to 95%.

6.10 Progressive version of the DWT-based methods

6.10.1 Sequential DWT-based algorithms

One of the main reasons behind our work on the wavelet-based segmentation and clustering algo-

rithms is the possibility they provide for performing an on-line analysis of traffic. The main idea

underlying this research area is that the change point detection method can be computed sequen-

tially, due to the fact that the DWT can be performed progressively. That is, beginning at a certain

origin t = 0, the SIC or ICSS statistics can be updated with new samples (or groups of samples) as

time progresses and the change point identification can be consequently rerun. Another possibility

is a sliding window approach, in which the ICSS or SIC methods would be applied only to a certain

amount of the last samples captured by the analyzer. The open question here is the length of the

window, i.e., the memory of the system.

The main problem related to the progressive algorithm is given by the binary segmentation

procedure of the SIC and ICSS methods and the re-evaluation phase at the end of the ICSS,

whose number of iterations cannot be predicted. This happens because the computations completely

depend on the existence of a variance change point in the studied data. In other words, there is no

way to predict the number of times that the rerun of the ICSS/SIC algorithm on the corresponding

subsequences must be performed, since we do not previously know the number and location of the

change points. This is why we cannot ensure that the complete process can be performed in real

time, although our algorithms allow some truncation, such as setting the minimum segment size

nmin.

This does not mean we have to abandon our goal of developing a real-time version of the

algorithms. We have been able to adapt the methods and provide a progressive or sequential version,

which is not 100% real-time, but approximates that. It consists of:
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1) An efficient implementation of the most costly steps of the static ICSS and SIC methods,

which was identified as the cumulated sum of squares of the samples of the time series. Our

code for both ICSS and SIC methods computes the squares cumsum only once for the whole

sequence and stores the result as a fast-access global variable that can be read by any of the

subroutines that perform the iterative steps.

2) A simple method for updating the squares cumsum by adding the new samples and extracting

the old ones (the latter applies only to the sliding window version of the algorithm, yet to be

coded).

3) The introduction of a granularity parameter G, which is defined as the number of new sam-

ples added to the trace to be analyzed at every update. The G value clearly influences the

computational load, since the number of reruns of the SIC algorithm at every scale is given

by bN/Gc, where N is the “off-line” data size.

In the following, we present two examples in which we evaluate the behavior of the DWT-ICSS

algorithm when adding new samples to the original trace results in a new change point to be

detected.

6.10.2 Application to a synthetic trace with changes in the Hurst pa-

rameter

We first apply the DWT-SIC sequential algorithm to a synthetic FGN trace composed of 3 segments

with H=0.5, 0.9 and 0.5, with change points at k = 32768 and k = 98304. In Figure 6.59 we have

plotted the three-dimensional change points diagram (top), obtained by using the db1 wavelet family

and setting G = 8192, and its projection on the (k, t) plane (bottom). The other free parameters

were set to the same values used in the correspondent off-line analysis.

In the three-dimensional diagram, the k axis refers to the change points position, the t axis

represents the analyzed time (as new samples are added), while the j axis is the scale at which the

change is detected. It is readily apparent that this three-dimensional plot represents a generalization

of the bidimensional change points diagrams previously analyzed in this section.

As we can see, the two change points are clearly detected at almost all scales and, what is

more important, the detection of a change point is maintained as time progresses. In this sense, the

algorithm is coherent. This is an important feature because false change candidates appear, but,

thanks to the coherence of the algorithm, they can be easily detected, since they disappear as the

algorithm progresses with new data. As an example, consider the spurious change point temporarily

detected at k ≈ 85000, t ≈ 105000, j = 6, that appears in just one occasion and disappears as

the next update of the algorithm. The ICSS method in some way corrects its previous incorrect

estimation as it advances in the analysis.

Figure 6.60 shows the sliding window version of the algorithm, in which instead of accumulating

samples from k = 1, the analysis is performed over a span of S samples. This is the progressive



6.10. PROGRESSIVE VERSION OF THE DWT-BASED METHODS 209

Figure 6.59: Top: Three-dimensional evolution of the DWT-ICSS algorithm when applied to a FGN trace

composed of 3 segments with H=0.5, 0.9 and 0.5, with changepoints at k = 32768 and k = 98304. The

analysis was performed at the 99% significance level with db1 wavelet and granularity G = 8192 samples.

Bottom left : The time-versus-time projection of the top side. The dotted line corresponds to the analysis

progress. Bottom right : The changes-versus-time cumulated change diagram obtained by projecting the 3D

diagram.

version of our algorithm.

6.10.3 Application to the BC-pAug89 Bellcore trace

We now apply the DWT-ICSS progressive algorithm to the BC-Aug89 trace described in Paragraph

3.2.10. The chosen granularity was G = 32768 and the span S = 4 ∗ G = 131072 samples, while

for the other parameters we chose the same values used in the previous example. Using the db1
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Figure 6.60: Top: Three-dimensional evolution of the DWT-ICSS algorithm when applied to a FGN com-

posed of 3 FGN segments with H=0.5, 0.9 and 0.5, with changepoints at k = 32768 and k = 98304. The

analysis was performed at the 99% significance level with db1 wavelet, granularity G = 8192 samples and

span of S = 4 ∗ G = 32768 samples. Bottom left : The time-versus-time projection of the top side. The

dotted lines correspond to the analyzed region. Bottom right : The changes-versus-time cumulated change

diagram obtained by projecting the 3D diagram.

wavelet family, we obtained the three-dimensional change points diagram shown in Figure 6.61

(top). Looking at this plot, we can see again the coherence of the change candidates. Furthermore,

its projection on the (k, j) plane (depicted in the bottom side of the figure) is similar (though not

exactly equal) to Figure 6.42. The differences between the pictures come from the different samples

set used for the analysis, which generates a different set of spurious changes. We conclude that the

progressive version of our estimation algorithm seems to be as reliable as the off-line version.
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Figure 6.61: Top: Three-dimensional evolution of the DWT-ICSS algorithm when applied to the BC-Aug89

trace aggregated at 10 ms. The analysis was performed at the 99% significance level with db1 wavelet,

granularity G = 8192 samples and span of S = 4 ∗ G = 32768 samples. Bottom left : The time-versus-

time projection of the top side. The dotted lines correspond to the analyzed region. Bottom right : The

changes-versus-time cumulated change diagram obtained by projecting the 3D diagram.

6.11 Summary of the chapter

Throughout this chapter the DWT-based methods (DWT-ICSS, DWT-SIC) have been analyzed in

several situations, including synthetic and real traffic traces. The main conclusions are:

• It has been checked that abrupt mean changes can create false changes, but we can easily

discard them with the alignment detection procedure.

• Variance changes, on the other hand, are very clearly detected as the alignment of changes with
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the same sign (increase or decrease) across scales, as long as the resolution of the alignment

procedure is of the order of the variations of the positions of the changes and the quorum

is not too high. Resolutions of 200 samples and quorums of 3 to 5 changes seem to be good

choices for FGN synthetic traces.

• The changes in the Hurst parameter appear also as aligned variance changes, but the sign

is different depending on the scale region, and can include a blind scale or scales in which

no change or very little is detected. The higher dispersion of the points requires a higher

resolution than that used for detecting pure variance changes, or a decrease in the quorum.

A good parameter combination with which more than 85% of the true change points for a

H = 0.5 → 0.9 were found was: 99% significance level, db1 wavelet, resolution=200 samples,

quorum=4 changes. The use of a higher order wavelet such as db3 provides slightly worse

results, but still over 85% of the true change points. For smoother H changes the detection

ratios decrease, and resolutions of 1000 to 5000 samples are required. DWT-SIC performs

slightly better than DWT-ICSS for the more abrupt H changes, and vice versa, due to the

fact that the ICSS returns more points (either “good” or spurious), while the SIC is stricter.

• Regarding the analysis of traces with multiple change points, we studied the performance of

the algorithms as a function of the separation of the change points. As was expected, the

smooth H changes require higher separations than the abrupt H changes. Separations under

5000 samples are very hard to detect, due to the smoothing effect of the DWT at the higher

scales. Since change points are usually aligned across 8 to 10 scales, at least 1000 samples of

separation are needed in order to detect two consecutive changes.

• The methods have been used for analyzing a couple of real traffic traces from the Bellcore

dataset, segmenting them in regions with (almost) homogeneous variance structure and esti-

mating the evolution of the variance and the Hurst parameter along time. We have identified

multiple situations: pure H changes, pure variance changes, and simultaneous H and variance

changes. In general terms, the SIC method seems to perform better than the ICSS (regarding

the location of changes) when they are compared under the same conditions, but since SIC is

slightly stricter than the ICSS, it can happen that the latter detects more changes. This can

influence the performance of the whole procedure, since the quorum has to be decreased for

the SIC.

• For the choice of parameters for the real traffic analysis, we recommend using a 99% signifi-

cance level, resolutions between 1000 and 5000 samples, and quorums of 3 to 5 changes. Of

course, the actual choice will depend on the application and the time granularity needs of the

algorithm which will use the segmentation data.

• The results from the segmentation of real traces are coherent with those obtained with the

constant-length window analysis, but our method gives more information about the evolution

of the trace. The BC-pAug89 trace has been found to have more variations than those usually

reported in the literature, while BC-OctExt has been confirmed as a very variable trace. The
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evolution of the traffic volume (or the variance) is not correlated with the behavior of the

Hurst parameter, in contradiction with the results obtained by other authors.

• Finally, a progressive version of our algorithm has been described. This modification can work

either in cumulative or sliding window modes, and is the first step towards a real-time version

of our DWT-based algorithms.

The main problem of using the DWT with the variance change detection statistics is the in-

creasing loss of time resolution with scale, which makes the indetermination of the true location

of the change point more difficult. The other problem of the DWT-based schemes is the lack of

time-shifting invariance. This can make the algorithm give different results for the same input series

when the relative phase between the input and the filter bank system differ; i.e., x(n) and x(n− 1)

provide different results. This is, of course, undesired. These two problems caused us to try other,

time-redundant wavelet transforms: the MODWT and the DTWT.



214 CHAPTER 6. DWT-BASED SEGMENTATION METHODS



Chapter 7

Alternative segmentation methods

(I): MODWT

7.1 Introduction

The previous chapter pointed out some of the drawbacks of the DWT, such as the smoothing effect

and the lack of resolution, both phenomena happening at the higher scales. Though we are satisfied

with the performance of the DWT-based methods, we have explored alternative wavelet transforms

with better properties, such as the Maximal Overlap DWT and the Dual Tree WT. These new

methods have not been explored as deeply as the DWT, since we only wanted to assess if they

could be good alternatives. That is why this chapter and the next one provide only a subset of the

tests performed with the DWT.

The MODWT is the other extreme of the DWT in terms of time redundancy, since it skips

completely the downsampling step and produces a wavelet coefficient at each scale for each sample

at the input. This means that for a J-level MODWT, (J + 1)N coefficients are obtained1. This

solves the problem of the lack of coefficients at the higher scales. Besides, the coefficients have a

very important property: they are perfectly aligned in time with the input sample (see Figure 7.1).

On the other hand, as we saw in Section 2.6.4, the redundancy introduces a lot of correlation. Since

the ICSS (and the SIC) expect an uncorrelated input this is a problem for our methods. In the

first phase we tried to correct it by using the Equivalent Degrees of Freedom (EDOF) approach,

as described in Section 7.3.1 with disappointing results. In the second phase we tried by increasing

the values of the significance level and the minimum segment size nmin.

Following the same scheme presented in Chapter 6 for the DWT, this chapter presents the

issues related to the MODWT-ICSS and MODWT-SIC methods, by studying its performance

when applied to synthetic LRD and real traffic traces. All the results are compared with those

1N coefficients for each of the J details and the approximation.
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Figure 7.1: Left : time alignment between the DWT coefficients at scales j = 1, 2, 3, using db1 wavelet.

Right : the MODWT coefficients.

found with the DWT. The results presented in this chapter have been published mainly in the

following references: [RS05c, RSdA05, Min05, RMSP05b, RMS06].

7.2 Statistical distribution of the MODWT coefficients

Figure 7.2 shows the distribution of the MODWT coefficients of an FGN trace at various scales. The

coefficients tend to be normally distributed, though at the higher scales the distribution seems to

deviate from Gaussian. However, the estimator of the shape parameter for the Generalized Gaussian

distribution returns values of 1.98, 2.04 and 1.99 for j = 1, 5 and 10, respectively, confirming the

Gaussianity of the MODWT coefficients of FGN traces.

7.3 Analysis of the effects of correlation on a pure FGN trace

We start our analysis with an FGN trace of length 131072 samples, Hurst parameter H = 0.8, zero

mean and unit variance, plot in Figure 5.14. The trace has been analyzed with the db1 wavelet, at

a depth J = 12. Figure 7.3 shows the MODWT detail coefficients at different scales, while Figure

7.4 plots the CSS statistic, with the 99% critical values of the statistic. Finally, Figure 7.5 plots the

autocorrelation functions of the wavelet details at each scale.

The figures show clearly the presence of a high autocorrelation that increases with the scale.

This effect induced by the MODWT was already described in Chapter 2, but here we see the

consequences, when combined with the ICSS. The correlation makes the CSS statistic to take

values far over the critical value, though there is no real variance change in the original series.

Figure 7.6 shows the corresponding change point diagram, where a huge amount of (false) change

points appear at the higher scales.

Does this invalidate the use of the MODWT? It would be a pity to miss out on the resolu-

tion properties of the transform. That is why we tried with two correlation-correcting approaches,
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Figure 7.2: Histograms (left) and probability plots for graphical normality testing (right) of the MODWT

coefficients of the FGN trace with H = 0.8 when analyzed with db3. From top to bottom, the analysis for

the coefficients at scales j = 1, j = 5 and j = 10.
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Figure 7.3: MODWT decomposition of the trace of Figure 5.14, for j = 1, 2, 3, 4, 8 and 12, using db1

wavelet. Note the difference in the units of the y axis.

Figure 7.4: CSS statistic applied to the wavelet details of the trace shown in Figure 5.14, for j = 1, 2, 3, 4, 8

and 12, using db1 wavelet at the 99% significance level. The associated critical levels ± 1.628√
T/2

are depicted

as red horizontal lines. Notice the difference in the units of the y axis.
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Figure 7.5: Sample autocorrelation of the MODWT detail coefficients of the trace of Figure 5.14 (j =

1, 2, 3, 4, 8, 12), with the 95% confidence intervals (horizontal lines).

Figure 7.6: Change point diagram for the MODWT-ICSS method when applied to the FGN trace with

H=0.8, at the 99% significance level, with db1 wavelet.
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one based in the Equivalent Degrees of Freedom (EDOF) concept, and another that consisted of

modifying the values of α and nmin.

7.3.1 The failure of the EDOF approach

We tried to attack the problem by using a concept of equivalent degrees of freedom (EDOF) which

may be helpful for wavelet-based variance estimation in case of correlation due to, for example,

using MODWT. First, recall from Section 4.4 that the position of the change point of a series with

length n is estimated by the SIC algorithm by k̂ such that

SIC(k̂) = min1<k<n−1SIC(k) (7.1)

where

SIC(n) = n log 2π + n log σ̂2 + n+ log n (7.2)

SIC(k) = n log 2π + k log σ̂1
2 + (n− k) log σ̂2

2 + n+ 2 log n, 1 < k < n (7.3)

are the expressions of the SIC statistic under the null hypothesis H0 (no change is present) and the

alternative hypothesis H1 (a change is present), respectively.

Following [PW02], the wavelet variance for a stationary process x(m), n = 1 . . . n is defined for

scale j as

ν2(j) = var(d̃(j, k)) (7.4)

where d̃(j, k)) denotes the MODWT coefficients obtained by filtering x(m). A fundamental property

of wavelet variance is its ability to decompose original process variance across scales:

J∑
j=1

ν2(j) = σ2
x (7.5)

An unbiased estimator of ν2(j) is given by

ν̂2(j) =
1
Mj

n∑
k=Lj

d̃2(j, k) (7.6)

where Mj = n−Lj +1 and Lj = (2j − 1)(L− 1)+1 for the wavelet filter of length L. If d̃(j, k) had

a Gaussian distribution and were uncorrelated, their sum of squares would follow (with a proper

renormalization) a chi-square distribution with Mj degrees of freedom. Due to the correlation,

however, some modification is required, for example by adjusting a degree of freedom and the

approximation
ην̂2(j)
ν2(j)

=d χ2
η (7.7)

with η being a constant known as the equivalent degrees of freedom (EDOF) of the Chi-square

distribution χ2
η. One of the possible estimators of η is

η̂ =
Mj ν̂

4(j)
Âj

(7.8)
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where

Âj =
ν̂4(j)

2
+

Mj−1∑
t=1

ŝ2j,t (7.9)

and ŝ2j,t is the usual biased estimator of autocovariance of d̃(j, k).

In [Whi98] one can find a study where in the ICSS test statistics, used for the variance change

point detection, sample size n was substituted for η in order to compensate the correlation resulting

from using MODWT. We tried to employ a similar technique by rewriting Equation 7.1 to the form

ˆSIC(n) = η̂ log 2π + η̂ log σ̂2 + η̂ + log η̂ (7.10)

and

ˆSIC(k) = η̂ log 2π + k log σ̂1
2 + (η̂ − k) log σ̂2

2 + η̂ + 2 log η̂ (7.11)

Note that we kept n in estimating σ̂2, σ̂1
2, and σ̂2

2 when using their logarithms because change point

k may appear at positions 2, . . . , n − 2. We conducted a small numerical study (100 independent

repetitions) using the Fractional Gaussian Noise generator described in [Sto], choosing a sample of

size n=2048, Hurst parameter 0.6 and 0.9 in the segments of length 1000 and 1048 respectively.

The variance of the whole process was kept constant and equal to 1, α was set to 0.1 (for the

values of 0.05 and 0.01 the outcomes did not differ) and the Daubechies db4 wavelet was used

(no improvement observed with the symlet4 filter). The results obtained were unappealing: on the

scales j = 3 . . . 6 we observed more or less uniformly distributed spurious change points instead of

the desirable sharp peak around the true value, as can be shown in Figure 7.7.

Figure 7.7: Failure of the SIC-EDOF-MODWT approach: real changepoint at 1000, maximum number of

detections could be 100, scale j = 6.

A possible reason for the failure of this method could be using critical values of the distribution

(derived under independence assumption in [CG97]) for the correlated data. Another explanation

might be the bias (due to the correlation) of the estimators of variance in SIC calculations. Perhaps

a more sophisticated modification of SIC method than ours would give better results.
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Figure 7.8: Left : Change point diagram obtained with the MODWT-SIC method using the parameters

shown in Table 7.1. Right : Size and sign of the change points.

7.3.2 Modification of α and nmin

We found that we could still get some good results by tuning appropriately the two free parameters

α (significance level) and nmin (the minimum segment size). The values of these parameters are

modified with the scale index j; the significance level is decreased by 10, while nmin is increased by

a factor of two. This has been done empirically, and although we know that the approach can be

statistically meaningless, it gives acceptable results. However, we only applied this approach to the

SIC statistic, due to the availability of an analytic expression for the critical level of the statistic.

The ICSS critical level can only be obtained by MonteCarlo simulation.

Figure 7.8 shows the MODWT-SIC change point diagram for the first 14 scales of the FGN

trace, with the db1 wavelet and the parameters shown in Table 7.1. With this choice of parameters

we clean the diagram, obtaining only some spurious points comparable to those found in Section

6.4 for the DWT-based analysis of the FGN trace, if we skip the points detected close to the end

of the trace, which we consider border effects. The use of a higher order wavelet (such as db3) does

not significatively affect either the quantity or the position of the spurious changes. Finally, the

introduction of a mean change in the middle of the series (such as the case studied in Section 6.5

for the DWT) returns results very similar to those obtained with the constant, zero mean.

Scale j 1 2 3 4 5 6 7 8 . . . 14

α 1E-2 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-7

nmin 1024 2048 4096 8192 16384 32768 65536 65536

Table 7.1: Parameters used in the MODWT-SIC analysis of the pure FGN trace with H = 0.8.
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Figure 7.9: Left : Change point diagram obtained with the MODWT-SIC method for the variance change

case using the parameters shown in Table 7.1 and db1. Right : Size and sign of the change points.

Figure 7.10: Left : Change point diagram obtained with the MODWT-SIC method for the variance change

case using the parameters shown in Table 7.1 and db3. Right : Size and sign of the change points.

quorum (votes) q=3 q=5

resolution (samples) r = 5 r = 20 r = 200 r = 5 r = 20 r = 200

db1
alignments none 65533 65510 none none 65510

absolute error 4 samples 27 samples 27 samples

db3
alignments 65534 65534 65520 none none 65520

absolute error 3 samples 3 samples 17 samples 17 samples

Table 7.2: Results of the alignment procedure applied to the MODWT-SIC analysis of an FGN trace with

a variance change. The alignments position and its absolute error are shown.
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7.4 Analysis of the effects of a variance change

We will now discuss the effects of a variance change on the MODWT-SIC algorithm. We use the

FGN trace with variances σ2
1 = 1 for the first half and σ2

2 = 4 for the second. The MODWT-SIC

parameters were chosen as shown in Table 7.1. The change points diagram of Figure 7.9, obtained

by using the db1 wavelet, shows that the change point located at k = 65536 has been detected at

almost all available scales, as expected, together with some spurious points that seem to concentrate

at the end of the trace. When the analysis is performed with the db3 wavelet, as shown in Figure

7.10, the results are similar.

If we compare the results with those found for the DWT-based method in Section 6.6, we find

a slight improvement in the detection of the variance change at the higher scales, though more

spurious points are also introduced. Nevertheless, once the alignment procedure is applied, the

results are comparable with those provided by the DWT-based methods, as shown in Table 7.2.

7.5 Application to a synthetic trace with changes in the

Hurst parameter

We face now the detection of changes in the scaling parameter of the series. We begin with the ideal

case of a transition from H = 0.5 to H = 0.9. Figures 7.11 and 7.12 show the change point diagrams

obtained with the parameters listed in Table 7.1, for the cases of db1 and db3, respectively. Apart

from the detection of spurious points (especially in the 6th scale), we highlight the bias towards the

lower positions detected at the higher scales, that seems to be more intense for the db1 wavelet than

for db3. We have not found a wavelet-based explanation for this behavior, since the MODWT is,

by construction, time-invariant. Therefore, we think it has to be related to the residual correlation

present at the higher scales. Regarding the influence of the wavelet, db3 generates many more

false points in the middle scales, probably due to their longer associated filters, which increase the

effect of the correlation. Comparing the results with those obtained with the DWT in Section 6.7,

the conclusion are similar to those found in the variance change case: the MODWT-based method

extends the range of change point detection to the higher scales, at the cost of an increase of the

false change points.

When the Hurst parameter goes through a much smoother change, such as H = 0.7 → 0.8, we

obtain the change points diagrams shown in Figures 7.13 and 7.14 for db1 and db3, respectively. As

expected, in these cases the H transition is harder to detect than the previous case. Comparing the

results with those obtained with the DWT-SIC method (shown in Figure 7.15, the MODWT-SIC

method provides some more change points at the higher scales, while the DWT-SIC misses them.
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Figure 7.11: Left : Change point diagram obtained with the MODWT-SIC method for the H = 0.5 → 0.9

Hurst parameter change case using the parameters shown in Table 7.1 and db1. Right : Size and sign.

Figure 7.12: Left : Change point diagram obtained with the MODWT-SIC method for the H = 0.5 → 0.9

Hurst parameter change case using the parameters shown in Table 7.1 and db3. Right : Size and sign.

Figure 7.13: Left : Change point diagram obtained with the MODWT-SIC method for the H = 0.7 → 0.8

Hurst parameter change case using the parameters shown in Table 7.1 and db1. Right : Size and sign.
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Figure 7.14: Left : Change point diagram obtained with the MODWT-SIC method for the H = 0.7 → 0.8

Hurst parameter change case using the parameters shown in Table 7.1 and db3. Right : Size and sign of the

change points.

Figure 7.15: Left : Change point diagram obtained with the DWT-SIC method for the H = 0.7 → 0.8

Hurst parameter change case at the 99% significance level, using db1. Right : Size and sign of the change

points.

7.6 Empirical assessment of the power of MODWT-SIC when

the Hurst parameter changes

As we did with the DWT-based algorithms, we performed an empirical test for assessing the power

of the MODWT-SIC algorithm. The results are shown in Table 7.3 for the cases of a H = 0.5 → 0.9

and a H = 0.7 → 0.8 change.

The main conclusions extracted from the data are:

• In all the cases, a lot of spurious changes are detected, though more than 1000 points (the

true changes) are detected around the ± resolution/2 positions margin.

• The higher the wavelet order, the more spurious points.
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H = 0.5 → 0.9 H = 0.7 → 0.8

db1 db3 db1 db3

resolution quorum Total True Total True Total True Total True

5 smpls

3 chg 35 16 (44.4%) 17 6 (35.3%) 3 0 (0%) 10 (0%)

4 chg 3 2 (66.7%) 0 0 0 0 0 0

5 chg 0 0 0 0 0 0 0 0

6 chg 0 0 0 0 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

20 smpls

3 chg 256 148 (57.8%) 188 122 (64.9%) 35 2 (5.7%) 14 4 (28.6%)

4 chg 39 32 (82.1%) 23 17 (73.9%) 2 0 (0%) 1 0 (0%)

5 chg 3 2 (66.7%) 1 1 (100%) 0 0 0 0

6 chg 0 0 0 0 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

200 smpls

3 chg 1145 869 (75.9%) 1148 829 (72.2%) 735 255 (34.7%) 652 217 (33.3%)

4 chg 949 845 (89.0%) 867 767 (88.5%) 239 123 (51.5%) 138 69 (50.0%)

5 chg 648 631 (97.4%) 552 524 (94.9%) 60 34 (56.7%) 27 17 (63.0%)

6 chg 324 321 (99.1%) 243 238 (97.9%) 14 6 (42.9%) 3 3 (100%)

7 chg 102 102 (100%) 70 70 (100%) 4 1 (25%) 1 1 (100%)

1000 smpls

3 chg 1988 962 (48.4%) 2855 958 (33.6%) 2008 699 (34.8%) 2934 606 (20.6%)

4 chg 1242 962 (77.5%) 1362 958 (70.3%) 1125 665 (59.1%) 1248 557 (44.6%)

5 chg 1062 962 (90.6%) 1063 945 (88.9%) 727 523 (71.9%) 683 427 (62.5%)

6 chg 825 780 (94.5%) 829 789 (95.2%) 439 350 (79.7%) 356 250 (70.2%)

7 chg 498 474 (95.2%) 539 523 (97.0%) 240 202 (84.2%) 172 130 (75.6%)

5000 smpls

3 chg 3608 1000 (27.8%) 6047 996 (26.6%) 3961 930 (23.5%) 6437 908 (14.1%)

4 chg 2299 1000 (43.5%) 3778 996 (26.4%) 2384 930 (39.0%) 4013 908 (22.6%)

5 chg 1644 1000 (60.8%) 2368 996 (42.1%) 1599 930 (58.2%) 2513 907 (36.1%)

6 chg 1322 1000 (75.6%) 1665 996 (59.8%) 1244 928 (74.6%) 1694 906 (53.5%)

7 chg 1169 1000 (85.5%) 1296 996 (76.6%) 1067 913 (85.6%) 1274 897 (70.4%)

10000 smpls

3 chg 4132 997 (24.1%) 6859 986 (14.4%) 4772 974 (20.4%) 7149 951 (13.3%)

4 chg 2935 997 (34.0%) 5071 986 (19.4%) 3195 974 (30.5%) 5453 951 (17.4%)

5 chg 2125 997 (46.9%) 3635 986 (27.1%) 2250 974 (43.3%) 3967 951 (24.0%)

6 chg 1675 996 (59.5%) 2631 986 (37.5%) 1645 974 (59.2%) 2807 951 (33.9%)

7 chg 1373 996 (72.5%) 1948 986 (50.6%) 1318 972 (73.7%) 2029 951 (46.9%)

Table 7.3: Results for the alignment detection algorithm for a trace whose H parameter changes from 0.5

to 0.9 and from 0.7 to 0.8, analyzed with the MODWT-SIC. The true changes are defined as those around

± resolution/2 positions around the true change position.

• The combination of a resolution of 1000 samples and a quorum of 5 alignments seems to be a

good value for the tradeoff between position accuracy and number of changes detected (more

than 90%), for the H = 0.5 → 0.9 case when analyzed with db1. The db3 analysis asks for a

higher quorum.

• In the H = 0.7 → 0.8 case the tradeoff is attained with a higher resolution value: 5000

samples, with a quorum of up to 7 aligned changes. The db3 analysis, as expected, finds fewer

true changes, but for all the values of quorum at the 5000 samples resolution, the number of

detected true changes is over 90%.

• When compared with the DWT-SIC results shown in Section 6.7.4, the MODWT-SIC (with

the particular parameter set chosen empirically in Section 7.3.2) performs slightly worse in

terms of a higher resolution / lower quorum for attaining the same number of true change

points. On the other hand, the MODWT-SIC is more consistent when it comes to comparing

the results obtained with the higher values of the quorum; i.e., the changes detected with

MODWT-SIC do not decay with the increase of the quorum as fast as those found with
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DWT-SIC. This results from the higher amount of samples at each scale generated by the

MODWT. In some sense, we could say that the changes detected with the MODWT are safer

or more trustable than those found with the DWT, since the former approach performs well

even at a high level of exigency (a high quorum).

7.7 Application to real traffic traces

Let us now detect the change points of the BC-pAug89 and BC-OctExt traces (described in Sections

3.2.10 and 5.4) with the MODWT-based algorithms.

7.7.1 Statistical distribution of the MODWT coefficients

We check the normality assumption of the coefficients, as we previously did in the synthetic FGN

traces case in Section 7.2. Figure 7.16 and 7.17 show the histograms and probability plots for the

BC-pAug89 and BC-OctExt traces (aggregated at 10 ms and 1 s, respectively) when analyzed with

db32.

The results are similar to those obtained with the DWT (see Figures 6.40 and 6.41). The lower

scales are clearly Laplacian for both traces, far from the Gaussian case. For the BC-pAug89 trace

the distribution comes closer and closer to Gaussian as the scale increases, while BC-OctExt keeps

its Laplacian shape even at the higher scales.

j = 1 j = 5 j = 10 j = 1 j = 4 j = 8

BC-pAug89 0.32 1.01 1.27 BC-OctExt 0.32 0.39 0.50

Table 7.4: GGD shape parameter of the MODWT decomposition of the Bellcore traces.

Table 7.4 presents the estimation of the shape parameter of the distributions shown in the

previous figures. The results are very similar to those obtained with the DWT. BC-OctExt is sharper-

than-Laplacian, while the higher scales of the BC-pAug89 trace fall in the zone between Laplacian

and Gaussian.

7.7.2 Segmentation of the Bellcore traces

BC-pAug89 trace

We start our segmentation tests in real traffic traces by comparing the MODWT-SIC with the

DWT-SIC using the most similar parameters we can. The values of nmin and the significance α are

the same as those shown in Table 7.1.

Figure 7.18 shows the MODWT-SIC segmentation with db3 wavelet, a resolution of 5000 sam-

ples and a 4 change quorum, comparable to the DWT-SIC segmentation shown in Figure 6.44.
2The results obtained with db1 are similar and have been omitted.
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Figure 7.16: Histograms (left) and probability plots for graphical normality testing (right) of the MODWT

coefficients of the BC-pAug89 trace (aggregated at 10 ms) when analyzed with db3. From top to bottom,

the analysis for the coefficients at scales j = 1, j = 5 and j = 10.
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Figure 7.17: Histograms (left) and probability plots for graphical normality testing (right) of the MODWT

coefficients of the BC-OctExt trace (aggregated at 1 s) when analyzed with db3. From top to bottom, the

analysis for the coefficients at scales j = 1, j = 4 and j = 8.
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Figure 7.18: Segmentation of the BC-pAug89 trace, with the MODWT-SIC method, db3, resolution = 5000,

quorum = 4.
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Figure 7.19: Segmentation of the BC-pAug89 trace, with the MODWT-SIC method, db3, resolution = 5000,

quorum = 5.
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Figure 7.20: Segmentation of the BC-pAug89 trace, with the MODWT-SIC method, db3, resolution = 1000,

quorum = 5.
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Figure 7.21: Segmentation of the BC-pAug89 trace, with the MODWT-SIC method, db3, resolution = 1000,

quorum = 4.
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Figure 7.22: Segmentation of the BC-pAug89 trace, with the MODWT-SIC method, db3, resolution = 1000,

j1 = 2, quorum = 4.
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Surprisingly, and contrary to the results found for the synthetic FGN traces3, MODWT-SIC re-

turns many more change points than those found by DWT-SIC. Our first hypothesis for explaining

this behavior was the coefficient distribution but, apart from the fact that at the higher scales DWT

generates much fewer samples, the distributions are quite similar (compare Figures 6.40 and 7.16,

and the GGD shape parameters in Tables 6.21 and 7.4) though the MODWT tends to be close to

the Gaussian distribution. Furthermore, the increased resolution of the MODWT method should

influence in the same way both the synthetic and real traces. Therefore, the only interpretation we

find for this behavior is that the choice of the α and nmin parameters is specially favorable to the

detection of change points at the higher scales.

Since the analysis returns a change practically every 5000 samples (coinciding with the resolution

parameter), we tried with an increase in the quorum exigency to 5. Figure 7.19 shows the results: a

much clearer picture of the segments, which is highly coherent with the constant-length H estimator

(i.e., those constant-length segments whose confidence intervals overlap are detected as H-constant

segments, such as the example of the region 0 < k < 20000). Since the resolution still seems too

high, we reduced it to 1000 samples with a quorum of 4 (Figure 7.21) and 5 changes (Figure 7.20).

The q = 5 case does not track properly the evolution of H; for example, the H ∼ 0.5 region around

k = 35000 (actually, the 0.7 < H < 0.85 regions at the beginning of the trace are detected as just

two segments with H ∼ 0.8. The analysis with a q = 4 quorum returns a very fragmented trace

with a high number of segments whose confidence intervals are very large, thus diminishing the

method’s reliability. Finally, Figure 7.22 presents a q = 4 analysis where the first noisy scale has

been omitted. The results are almost identical to those found when the scale was taken into account,

and therefore the problem does not come from the highest frequency, short-time fluctuations.

To sum up, though the ranges of values of H and the general shape of the H segments are

coherent with those found in Chapter 6 and with the mean value of H ∼ 0.8, the correct parameter

combination remains to be found. The lack of statistical reliability of the empirical choice of nmin

and α discourages us from performing a systematic study of the best combination of the resolution

and quorum values.

BC-OctExt trace

Figures 7.23 and 7.24 show the MODWT-SIC segmentation of the BC-OctExt trace with db3, a

resolution of 1000 samples and a quorum of 4 and 3 scales respectively. In this case the results

are quite similar to those found with the DWT-SIC with a higher quorum (see Figure 6.57 for

q = 6 and Figure 6.56 for q = 5), thus confirming the tendency already detected in the analysis of

FGN traces. Regarding the Hurst parameter values, we can confirm the high variability of H in the

BC-OctExt trace, with values in the 0 < H < 1.3 range.

3Recall that the analysis parameters were the same in both analysis.



7.7. APPLICATION TO REAL TRAFFIC TRACES 237

Figure 7.23: Segmentation of the BC-OctExt trace, with the MODWT-SIC method, db3, resolution = 1000,

quorum = 4.
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Figure 7.24: Segmentation of the BC-OctExt trace, with the MODWT-SIC method, db3, resolution = 1000,

quorum = 3.
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7.8 Summary of the chapter

As shown in the previous sections, the MODWT has the nice properties of time-invariance and is

capable of producing the same amount of time samples at any time scale, thus allowing for a much

more accurate location of the changes than the DWT. On the other hand there is a price to be paid:

the decorrelation properties are lost due to the redundant, non-orthogonal nature of the transform.

Our first attempt to correct the correlation problem, based on the use of the Equivalent Degrees

of Freedom (EDOF), clearly failed. But we have shown that good results can still be obtained by

forcing some parameters (the significance level of the variance change detector, α, and the minimum

length of the H-constant segment, nmin, to take unusual values. This of course may decrease the

mathematical validity of the procedure and make it somewhat heuristic, but the results show both

an agreement with those found with the DWT and in some cases an improvement (for example,

when a specific change point is detected across more scales than when DWT was applied). The

unusual significance values also prevents us from using the ICSS as a variance change detector,

since we do not know the critical values for the statistic4.

When tested against synthetic FGN traces, MODWT-SIC performs slightly worse than DWT-

SIC: it needs a a higher resolution or a lower quorum in order to get similar change point detection

capability. On the other hand, MODWT-SIC seems more robust than DWT-SIC in terms of its

capability of change detection at the higher scales (and, consequently, performs better than DWT-

SIC when the quorum is high), thanks to its higher time resolution at the lower frequencies.

Unfortunately, the lack of statistical reliability of the choice of nmin and α makes it difficult to

use MODWT in the study of real traces. The empirically-derived values of the analysis parameters

that we found to provide coherent segmentation results do not have any solid theoretical base.

Therefore we do not recommend the use of MODWT as a replacement for DWT. However, we still

look for a transform with a better resolution than DWT while keeping a low correlation. The Dual

Tree Wavelet Transform has such properties, as we will see in the next chapter.

4The critical level values can be obtained via a MonteCarlo study, but we did not proceed in this direction because

the MODWT-SIC results were not so good as to justify the effort
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Chapter 8

Alternative segmentation methods

(II): DTWT

8.1 Introduction

The main drawback of the MODWT is the high degree of correlation found at the higher time scales

(i.e., the lowest frequencies). Though the fine tuning of some parameters produces good results with

the MODWT-based methods, the use of other wavelet transforms may improve the performance

of the algorithms. While the DWT (no correlation, lack of time resolution, time-variant) and the

MODWT (high correlation, best time resolution, time-invariant) are two extremal cases, other

transforms fall in the middle and may provide a better trade-off between correlation and time

resolution.

The Dual Tree (Complex) Wavelet Transform (DTWT) in one such possibility. As shown in

Section 2.8, the DTWT output is almost time-invariant, while producing only twice the amount

of samples of those generated by a DWT decomposition and with only a slight increase in the

correlation of the coefficients. The main challenge of the DTWT is the interpretation of its complex

nature: two tree-shaped banks with different filters in both branches, as shown in Figure 2.24. We

first treated each branch separately, and then found that the modulus of the complex output gives

better results.

As in the previous chapters, this one describes the issues related to the DTWT-based methods

and its performance when applied to synthetic LRD and real traffic traces. The DTWT methods

are still in an early phase of development. That is why this chapter will provide only the first results

of our experiments, but will not provide a complete, systematical study such as the one applied to

DWT in Chapter 6 and will remain at an exploratory level, at least enough to compare the DWT

and MODWT-based method with the new DTWT algorithms. The results presented in this chapter

have been published in [ZR06], [RZ06] and [RZM06].
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8.2 DTWT-based methods

8.2.1 Applying the DTWT to our problem

One question to be answered before using the DTWT for multiscale variance change detection is:

which set of filters should be used with the DTWT? Recall from Section 2.8 that two different

filter sets must be defined: the first-level biorthogonal filters, and the filters above the first level of

decomposition. Kingsbury [Kin01] presents and evaluates different solutions for both choices, finding

that longer filters improve shift invariance at the cost of a higher complexity. The trade-off calls

for using middle-length filters. In our experiments we will use the following: the Near-symmetric

(13, 19) tap near sym b filters for the first level, and the Q-shift (14, 14) tap qshift b filters for

the remaining levels. Being that the DTWT is just an alternative to the well founded DWT-based

methods, we have not performed an extensive test campaign in order to determine if the other

filters provide better results for our change detection algorithms. The aforementioned set of filters

has been used in several papers (applied to image coding and also to one-dimensional signals) with

good results.

The other important question to be answered is: how can we interpret its double-tree or complex

output? We face two different possibilities:

• Method 1: Our first idea was to combine the output of both trees by applying the vari-

ance change detection points separately, adding all the detected changes, and then modifying

(actually, doubling) the quorum to be reached in order to decide that a change is present.

Since the intuition behind the DTWT is that each tree works with the even and odd samples

respectively, we thought that working in the aforementioned way would allow us to detect the

change points that were missed due to the time-variance of the DWT: if a tree missed one

particular change point at a certain scale, the other tree would capture it. The results were

unsatisfying, as is explained in Section 8.2.2.

• Method 2: Our second attempt was to compute the DTWT modulus as the random variable

whose variance is studied, and then apply the usual quorum (as we did for the single tree

transforms). We were reluctant to do so, since Section 2.8.6 showed the presence of a slight

residual correlation (usually only at the first or second lag), and we thought we would get

worse results. But it turned out to be a better approach than the previous one, as will be

described in Section 8.2.3.

In order to provide a preliminary statistical analysis of the performance of the algorithms with

both approaches, we designed two different scenarios and analyzed them with the four combinations:

DWT-ICSS, DWT-SIC, DTWT-ICSS and DTWT-SIC. Because of its similar phase properties,

symlet4 filter was used for DWT and near sym b along with qshift b were our choice for DTWT1.

1We are aware of the fact that the use of symlets excludes the direct comparison of the results obtained in this

test and those already described for the DWT- and MODWT-based methods using Daubechies’ wavelets, but since



8.2. DTWT-BASED METHODS 243

Figure 8.1: Top: Realization of a trace for Scenario 1. Bottom: Realization of a trace for Scenario 2.

All the tests were performed with fractional Gaussian noise (FGN) segments. We do not provide at

this time any test over real traffic, since in this study we are rather more interested in comparing

the algorithms from a statistical point of view, and this can only be achieved with synthetic traces

where the true change points are known.

The first scenario includes a 8192-sample FGN trace with constant Hurst parameter (H = 0.7)

and three segments with different variance ratios: 1, 1.5 and 6, providing an example of a smooth

variance change at position 2001 and an abrupt one at position 5001 (Figure 8.1, top). The second

scenario simulates a constant variance situation with Hurst parameter changes. The trace starts

with H = 0.8, changes to H = 0.9 (smooth change) at 2001, and then changes again to H = 0.6

(abrupt change) at sample 5001 (Figure 8.1, bottom). The parameters used in the test were a 95%

significance level, decomposition level J = 6 scales, nmin = 1, resolution=256 samples, quorum (1st

method) = 6 changes, and quorum (2nd method) = 3 changes.

For each combination of transform and change point detection algorithm we performed a Monte

Carlo test with 1000 runs. The Hough transform-based clustering procedure was included in the

tests. We defined successful detection as the presence of the point in a neighborhood of length 129,

centered in the true value of estimated parameters (±64 points around the true change position).

An interval of this size is about 1.5% of the length of the whole time series. The parameters to be

studied are the ratio of successfully detected change points (a rough measure of the power of the

tests), the mean change position found by the algorithms, its median, the variance around the true

change point, and the skewness, also with respect to a true value.

this section is devoted to test the relative performance of the DTWT and DWT techniques, we wanted to be sure

they were compared in a fair scenario. Of course, one could argue that even symlets are very different from the

DTWT filters, and that the comparison is ill-poised, but to our knowledge this is the closest and fairest comparison

we can attempt.
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8.2.2 Method 1: Adding the changes of both trees

For the first point in the first scenario (Table 8.1, Figure 8.2), we can clearly see the higher power

of the DWT-based methods (more points are detected by the DWT than by DTWT). On the other

hand DTWT seems to localize the change point with a higher precision than DWT, a trend that was

expected due to its time shift invariance. The changes detected with DWT show a higher variance.

For the second point both DWT and DTWT methods perform quite well in terms of power, with

almost 100% detection ratios, though DWT-ICSS suffers from misalignment (mean and median 24

points away from the true value), a fact that is reflected in a higher variance. All the methods have

a comparable rate of asymmetry calculated by the skewness parameter.

For the second scenario (Table 8.2, Figure 8.6), we find a problem with the detection of the first

point while still being able to locate the second one. Recall that the transition of the H parameter

produces blind zones; i.e. after detecting a change at certain scales (in our case for the second point

at j = 1, 2) no points are observed at higher scales (j = 3, 4) and reappear later (j = 5, 6). See

Figure 8.6 for an illustration of this phenomenon. For the first point, however, a high detection

rate was present only for j = 1, 2 and to a very small extent on the sixth scale. With a minimum

number of votes equal to 3 it resulted in overall lack of power of the test. On a LogScale diagram,

the blind zone would correspond to the situation when the linear regressions are close to each other.

It may be likely that a larger sample size would help in this situation, but even if it were a case, this

example shows the unwanted possibility of confusing process variance change with H transition. To

distinguish between these situations one should perhaps keep some record of the scales at which

points were detected and try to use the blind zone concept. Another conclusion we extract from

this study is that for the second point DTWT methods suffer again for lack of power (although

localization is better and not as dispersed as that of DWT-based methods, as expressed by the

lower variance obtained with DTWT).

8.2.3 Method 2: Results with DTWT modulus

The problem we faced in the previous section was the relatively low power of the DTWT-based

tests, that was reflected, for example, in the first scenario as change-point detection ratios at the

level of 25% for the DTWT while being about 50% for DWT case. A reason for that was the way of

treating information provided by both DTWT trees, i.e. combining the sets of detected candidate

points and doubling the threshold for deciding which candidates become valid change-points. This

was found to be very conservative and has been replaced by the following approach: instead of

processing approximation axa(j, k) and detail dxb(j, k) coefficients from both trees separately, the

quantity zx(j, k) =
√
a2

xa(j, k) + d2
xb(j, k) is used as an input for ICSS algorithm. zx(j, k) may

be regarded as a modulus of a complex number. Kingsbury [Kin01] provides a description of this

approach along with a shift invariance analysis.

Scenarios 1 and 2 were repeated with the new modulus-based approach (Tables 8.1 and 8.2,

Figures 8.3 and 8.5). In both cases a significant increase of detection ratio for the DTWT-modulus
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Figure 8.2: Detected changes for Scenario 1, for the first and second changes, for the combinations of

DWT/DTWT and ICSS/SIC.



246 CHAPTER 8. ALTERNATIVE SEGMENTATION METHODS (II): DTWT

Figure 8.3: Detected changes for Scenario 1 and the DTWT-ICSS and DTWT-SIC with method 2 (mod-

ulus).

1st point Det. ratio Mean Median Variance Skewness

DWT-ICSS 54.0% 2038 2040 1678 1.20

DWT-SIC 64.9% 2029 2030 1191 1.28

DTWT-ICSS 24.1% 2000 1998 2604 1.48

DTWT-SIC 52.6% 1993 1994 236 -1.31

DTWT-ICSS mod 51.5% 2006 2004 322 1.94

DTWT-SIC mod 74.6% 1997 1999 222 -0.69

2nd point Det. ratio Mean Median Variance Skewness

DWT-ICSS 99.3% 5025 5024 778 1.34

DWT-SIC 100.0% 5009 5008 254 1.35

DTWT-ICSS 96.8% 4999 4999 36 0.36

DTWT-SIC 100.0% 4989 4989 192 -1.29

DTWT-ICSS mod 99.2% 5003 5003 57 1.70

DTWT-SIC mod 100.0% 4993 4994 131 -1.51

Table 8.1: Results for Scenario 1 (1000 independent runs, variance change).
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Figure 8.4: Detected changes for Scenario 2, for the first and second changes, for the combinations of

DWT/DTWT and ICSS/SIC.
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Figure 8.5: Detected changes for Scenario 2 and the DTWT-ICSS and DTWT-SIC with method 2 (mod-

ulus).

1st point Det. ratio Mean Median Variance Skewness

DWT-ICSS 7.6% 2022 2029 1362 0.71

DWT-SIC 1.8% 2024 2029 1148 0.95

DTWT-ICSS 2.1% 1981 1988 659 -1.63

DTWT-SIC 0.3% n/a n/a n/a n/a

DTWT-ICSS mod 8.5% 1986 1985 459 -1.51

DTWT-SIC mod 1.2% 1988 1988 347 -1.47

2nd point Det. ratio Mean Median Variance Skewness

DWT-ICSS 66.4% 5010 5010 661 0.92

DWT-SIC 72.9% 5014 5015 787 1.06

DTWT-ICSS 24.5% 4990 4990 261 -1.47

DTWT-SIC 23.5% 4991 4991 222 -1.45

DTWT-ICSS mod 54.9% 4995 4997 244 -1.28

DTWT-SIC mod 52.2% 4996 4997 226 -1.16

Table 8.2: Results for Scenario 2 (1000 independent runs, H change). The estimators based on sample size

of 3 have been skipped as meaningless.
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Figure 8.6: The blind zone phenomenon. From left to right and top to bottom, DWT-ICSS analysis of

scenario 2 at scales 1, 3, 4 and 6. Scale 4 is the blind zone for the second H change. The first H change

point disappears at scales higher than 4 due to the lack of resolution of DWT.

approach can be observed when compared to the old method (treating both trees separately).

Results are now comparable to those provided by the DWT method, while keeping very good

precision in true point localization. Note the still significant shift with respect to the true point for

DWT despite using appropriate corrections for centering the transform’s output. With these results

we consider validated the DTWT-modulus method, which will be used in the rest of the chapter.

8.3 Statistical characterization of the DTWT coefficients of

a pure FGN trace

This section studies the distribution and the correlation of the real and imaginary parts and the

modulus of the DTWT coefficients of the usual synthetic FGN trace of length 131072 samples,

Hurst parameter H = 0.8, zero mean and unit variance. The analysis was performed with the

near sym b and qshift b filters.

8.3.1 Distribution of the coefficients

The results are shown in Figure 8.7, and Table 8.3 includes the estimation of the Generalized

Gaussian shape parameter for each data set. The first remarkable feature is the almost perfect

normality of the real and imaginary parts of the coefficients for the lower scales. The higher scales

deviate more from normality than the DWT and MODWT coefficients in the same situation (see

Figures 6.4 and 7.2, respectively). Regarding the modulus, the distribution is obviously not Gaussian

(though it does not deviate too much, as can be seen in the shape parameter) and resembles a Chi-
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square χ2
k with k = 2 or k = 3 degrees of freedom. A Chi-square with exactly two degrees of freedom

is what is expected for the sum of the squares of two independent, identically distributed Gaussian

distributions; the presence of the square root can explain the deviation towards k = 3. Though the

distributions deviate from the normality expected by the variance change detectors, we expect this

effect not to excessively influence our algorithm, as we will see later during the method’s validation

with synthetic traces.

Scales j = 1 j = 5 j = 10

Real part 1.99 2.08 2.40

Imaginary part 1.97 2.06 2.31

Modulus 1.76 2.08 2.39

Table 8.3: GGD shape parameter of the DWT decomposition of the FGN trace with H = 0.8.

8.3.2 Correlation of the DTWT coefficients and its influence

Our aim now is to assess the degree of correlation and its influence in the results of our algorithms. As

we did in the previous cases, the central role of the Cumulated Sum of Squares in our algorithms

makes it the natural choice for calibrating the influence of the correlation. Figure 8.8 plots the

autocorrelation functions of the DTWT modulus at each scale (with the 95% confidence intervals),

while Figure 8.9 plots the CSS statistic (with the 99% critical values of the statistic). The figures

show the residual autocorrelation already described in Section 2.8.6, where a Gaussian white noise

was analyzed with the DTWT. The good news is that the autocorrelation is kept to an acceptable

level. Figure 8.8 shows that no statistically significant correlation lasts more than two (in most cases,

just one) lags, and that this correlation is further mitigated when the scale increases. Besides, Figure

8.9 proves the feasibility of using the DTWT together with the variance change detectors based on

the CSS statistic: only one of the scales (j = 2) is close to producing a false change point, at the

rather strict 99% significance level2.

8.4 Analysis of the effects of a variance change

Let us now assess how variance changes are detected by DTWT, by analyzing the usual FGN trace

(H = 0.8) with variances σ2
1 = 1 for the first half and σ2

2 = 4 for the second. The analyses have been

performed with the DTWT-ICSS and DTWT-SIC methods, at both the 95% and 99% significance

levels, using the (13, 19) tap near sym b and the (14, 14) tap qshift b filters.

8.4.1 DTWT-ICSS

Figure 8.10 contains the multiscale change points diagrams for the DTWT-ICSS. For both signifi-

cance levels the results are the same, that is, all the points that survived the 95% also passed the
2Such a false, isolated change point would be later filtered by the quorum mechanism incorporated in our method.
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Figure 8.7: Histograms and normal probability plots of the real and imaginary parts and the modulus of

the DTWT coefficients of the FGN trace with H = 0.8 when analyzed with the near sym b and qshift b

filters. From top to bottom, the analysis for the coefficients at scales j = 1, 5 and 10.
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Figure 8.8: Sample autocorrelation of the real part, imaginary part and modulus of the DTWT coefficients

of the FGN trace (j = 1, 5, 10), with the 95% confidence intervals (horizontal lines).

Figure 8.9: CSS statistic applied to the modulus of the DTWT coefficients of the FGN trace, for j =

1, 2, 3, 4, 8 and 12 at the 99% significance level. The associated critical levels ± 1.628√
T/2

are depicted as red

horizontal lines. Notice the difference in the units of the y axis.
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Figure 8.10: Change point diagram obtained with the DTWT-ICSS method for the variance change case.

Left: 95% significance level. Right : 99% significance level.

Figure 8.11: Change point diagram obtained with the DTWT-SIC method for the variance change case.

Left: 95% significance level. Right : 99% significance level.

99% test. The change point located at k = 65536 is well localized at a good amount of scales (on the

order of 10-12 scales), comparable to the results obtained with the DWT-ICSS method (see Figures

6.11 and 6.12). When the Hough transform-based alignment method is used, with a quorum of 4

changes and a resolution of 100 points, the mean change point is estimated at position k = 65549;

lower resolutions (5 and 20) did not return any change point. In these terms the results are again

similar to those obtained with the DWT-based methods.

8.4.2 DTWT-SIC

Figure 8.11 repeats the analysis of the previous section for the DTWT-SIC method. The results

are, again, equal for the two significance levels. Some false change points (not present at the ICSS

analysis) appear at the higher scales. After the alignment procedure, the change point is detected

at k = 65540. In all senses, the results are comparable to the ones obtained with the ICSS and with

the DWT-based methods. Since no significant differences were found in either significance levels,

we will restrict the following analysis to the usual 99% significance level.



254 CHAPTER 8. ALTERNATIVE SEGMENTATION METHODS (II): DTWT

8.5 Application to a synthetic trace with changes in the

Hurst parameter

The first trace to be analyzed contains a transition from H = 0.5 to H = 0.9 in the middle of

a 262144 samples FGN trace. Figure 8.12 shows the distribution of the modulus of the DTWT

for such a composed trace. Comparing it to Figure 8.7, we can see that in the H change case the

distribution still resemble the expected χ2
k Chi-square, though the higher scales tend to follow the

k = 1 or k = 2. The results of our algorithm were not excessively affected.

Figures 8.13 and 8.14 show the change point diagrams obtained with the DTWT-ICSS and

DTWT-SIC methods, respectively, at the 99% significance level. The alignment method (with res-

olution 200 and quorum 4) returned changes at k = 131054 for the ICSS and at k = 131073 for the

SIC. The results are quite similar to those found for the DWT-based methods in Sections 6.7.1 and

6.7.2. In terms of amount of scales in which the change is detected, the DTWT gives in some cases

one or two fewer scales than DWT, but on the other hand the DTWT are better localized than

those returned by the DWT. This effect is a repetition of what we already saw in Section 8.2.1.

For the smoother change H = 0.7 → 0.8, the distributions of Figure 8.15 and the change points

diagrams in Figures 8.16 and 8.17 show not so good behavior. The histograms show the higher

dispersion of the coefficients and its increase with the scale. On the other hand, normality seems

to be maintained at a higher degree than in the H = 0.5 → 0.9. DTWT-ICSS still resists the

comparison with DWT-ICSS in terms of changes detected and dispersion around the true change

point, but DTWT-SIC clearly shows very weak changes (note the sizes) and an increase in their

dispersion. It seems that SIC is more sensitive to the non-Gaussianity of the coefficients. The

consequences of this behavior will also appear in the following section, where we will empirically

evaluate the power of the tests.

8.6 Empirical assessment of the power of the DTWT meth-

ods when the Hurst parameter changes

The results of the empirical test for assessing the power of the DTWT-based algorithms are shown

in Tables 8.4 and 8.5 for the cases of H = 0.5 → 0.9 and H = 0.7 → 0.8, respectively. The main

conclusions extracted from the data are:

• Contrary to what happened with the MODWT, few spurious or false points are detected

(recall the theoretical amount of 1000 changes), thus confirming the influence of the better

correlation properties. Besides, almost all the points belong to the true region, confirming the

good dispersion properties of the DTWT-modulus approach.

• The comparison with DWT offers different results, depending on the variance change detector

chosen. When comparing DWT-ICSS (Tables 6.9 and 6.11) versus DTWT-ICSS, for both cases

H = 0.5 → 0.9 and H = 0.7 → 0.8, and for any combination of significance level, resolution
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Figure 8.12: Histograms and normal probability plots of the modulus of the DTWT coefficients of the

FGN trace with a change in its Hurst parameter from H = 0.5 to H = 0.9.

Figure 8.13: Left : Change point diagram obtained with the DTWT-ICSS method for the H = 0.5 → 0.9

Hurst parameter change. Right : Size and sign of the change points.

Figure 8.14: Left : Change point diagram obtained with the DTWT-SIC method for the H = 0.5 → 0.9

Hurst parameter change. Right : Size and sign of the change points.
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Figure 8.15: Histograms and normal probability plots of the modulus of the DTWT coefficients of the

FGN trace with a change in its Hurst parameter from H = 0.7 to H = 0.8.

Figure 8.16: Left : Change point diagram obtained with the DTWT-ICSS method for the H = 0.7 → 0.8

Hurst parameter change. Right : Size and sign of the change points.

Figure 8.17: Left : Change point diagram obtained with the DTWT-SIC method for the H = 0.7 → 0.8

Hurst parameter change. Right : Size and sign of the change points.
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Figure 8.18: Histograms of the change points when DTWT is applied to 1000 traces whose H parameter

changes from 0.5 to 0.9. Top left : DTWT-ICSS 95%, resolution=200 samples, quorum=5 changes. Top right :

DTWT-ICSS 99%, r=200, q=5 . Bottom left : DTWT-SIC 95%, r=200, q=4. Bottom right : DTWT-SIC

99%, r=200, q=4. The x axis has been zoomed on the region 131072± 100.

Figure 8.19: Histograms of the change points when DTWT is applied to 1000 traces whose H parameter

changes from 0.7 to 0.8. Top left : DTWT-ICSS 95%, resolution=5000 samples, quorum=5 changes. Top

right : DTWT-ICSS 99%, r=5000, q=5. Bottom left : DTWT-SIC 95%, r=5000, q=3. Bottom right : DTWT-

SIC 99%, r=5000, q=3. The x axis is zoomed on the region 131072± 2500.
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ICSS 95% ICSS 99% SIC 95% SIC 99%

resol. quorum Total True Total True Total True Total True

5 smpls

3 chg 806 788 (97.8%) 753 740 (98.3%) 631 598 (94.8%) 500 472 (94.4%)

4 chg 562 561 (99.8%) 509 508 (99.8%) 335 334 (99.7%) 212 211 (99.5%)

5 chg 346 346 (100%) 293 293 (100%) 126 126 (100%) 464 6 (100%)

6 chg 182 182 (100%) 134 134 (100%) 42 42 (100%) 12 12 (100%)

7 chg 63 63 (100%) 40 40 (100%) 9 9 (100%) 4 4 (100%)

20 smpls

3 chg 899 877 (97.6%) 859 841 (97.9%) 755 715 (94.7%) 640 611 (95.5%)

4 chg 697 696 (99.9%) 656 655 (99.8%) 477 472 (98.9%) 342 340 (99.4%)

5 chg 461 461 (100%) 402 402 (100%) 230 230 (100%) 131 131 (100%)

6 chg 278 461 (100%) 228 228 (100%) 82 82 (100%) 34 34 (100%)

7 chg 122 461 (100%) 89 89 (100%) 24 24 (100%) 7 7 (100%)

200 smpls

3 chg 1005 985 (98.0%) 998 981 (98.3%) 1018 961 (94.4%) 978 931 (95.2%)

4 chg 965 959 (99.4%) 957 950 (99.3%) 923 900 (97.5%) 848 832 (98.1%)

5 chg 870 868 (99.8%) 842 840 (99.8%) 763 758 (99.3%) 641 638 (99.5%)

6 chg 719 719 (100%) 673 673 (100%) 518 518 (100%) 370 370 (100%)

7 chg 509 509 (100%) 460 460 (100%) 300 300 (100%) 184 184 (100%)

1000 smpls

3 chg 1013 1000 (98.7%) 1007 1000 (99.3%) 1048 985 (94.0%) 1005 981 (97.6%)

4 chg 1001 1000 (99.9%) 1001 1000 (99.9%) 1017 985 (96.9%) 1002 981 (97.9%)

5 chg 992 992 (100%) 991 991 (100%) 1000 983 (98.3%) 994 978 (98.4%)

6 chg 973 973 (100%) 966 966 (100%) 953 945 (99.2%) 897 889 (99.1%)

7 chg 878 878 (100%) 854 854 (100%) 832 830 (99.8%) 748 747 (99.9%)

5000 smpls

3 chg 1009 1000 (99.1%) 1003 1000 (99.7%) 1071 1000 (93.4%) 1005 1000 (99.5%)

4 chg 1001 1000 (99.9%) 1000 1000 (100%) 1018 1000 (98.2%) 1002 1000 (99.8%)

5 chg 1000 1000 (100%) 1000 1000 (100%) 1004 1000 (99.6%) 1000 1000 (100%)

6 chg 1000 1000 (100%) 1000 1000 (100%) 1001 1000 (99.29%) 1000 1000 (100%)

7 chg 1000 1000 (100%) 1000 1000 (100%) 1000 1000 (100%) 1000 1000 (100%)

10000 smpls

3 chg 1004 1000 (99.6%) 1001 1000 (99.9%) 1076 1000 (93.0%) 1004 1000 (99.6%)

4 chg 1000 1000 (100%) 1000 1000 (100%) 1020 1000 (98.0%) 1002 1000 (99.8%)

5 chg 1000 1000 (100%) 1000 1000 (100%) 1005 1000 (99.5%) 1000 1000 (100%)

6 chg 1000 1000 (100%) 1000 1000 (100%) 1001 1000 (99.9%) 1000 1000 (100%)

7 chg 1000 1000 (100%) 1000 1000 (100%) 1000 1000 (100%) 1000 1000 (100%)

Table 8.4: Results for the alignment detection algorithm for a trace whose H parameter changes from 0.5

to 0.9, analyzed with the DTWT-ICSS and DTWT-SIC methods (near sym b and qshift b filters). The

true changes are defined as those around ± resolution/2 positions around the true change position.

and quorum, DTWT outperforms the DWT. And what is more important, we can be sure

of the validity of the additional changes found by the DTWT, since practically no spurious

changes are found (almost all detections are true changes). Regarding the comparison between

DWT-SIC (Tables 6.14 and 6.15) and DTWT-SIC, the results are clearly against DTWT.

For both H changes DWT provides more detections, especially at the lower resolutions and

quorums. DTWT does not provide comparable results until the resolution rises to 200 samples

for the H = 0.5 → 0.9 case and to 1000 samples for the H = 0.7 → 0.8 scenario.

• In general, the results obtained with the ICSS statistic are much better than those obtained

with the SIC. It seems the ICSS adapts better to the non-Gaussian distribution of the DTWT

modulus. In any case, the DTWT-SIC results are not so bad as to abandon the method.

• A good tradeoff for the H = 0.5 → 0.9 case is obtained with a resolution of 200 samples

and a quorum of 5 alignments for the DTWT-ICSS case, while 200 samples and 4 alignments

seem to be the choice for DTWT-SIC. In these two situations we detect more than 83% of the

true changes. Note the differential (in quorum) needed for the SIC method to provide results
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ICSS 95% ICSS 99% SIC 95% SIC 99%

resol. quorum Total True Total True Total True Total True

5 smpls

3 chg 96 85 (88.5%) 74 67 (90.5%) 7 2 (28.6%) 1 1 (100%)

4 chg 19 18 (94.7%) 13 13 (100%) 1 1 (100%) 0 0

5 chg 0 0 0 0 0 0 0 0

6 chg 0 0 0 0 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

20 smpls

3 chg 130 120 (92.3%) 100 92 (92.0%) 41 9 (22.0%) 9 5 (55.5%)

4 chg 29 28 (96.6%) 20 20 (100%) 9 2 (22.2%) 3 0 (0%)

5 chg 2 2 (100%) 2 2 (100%) 1 0 (0%) 0 0

6 chg 0 0 0 0 0 0 0 0

7 chg 0 0 0 0 0 0 0 0

200 smpls

3 chg 429 370 (86.2%) 364 330 (90.7%) 202 88 (43.5%) 93 55 (59.1%)

4 chg 164 158 (96.3%) 135 128 (94.8%) 60 34 (56.7%) 16 9 (56.3%)

5 chg 38 37 (97.4%) 33 33 (100%) 17 8 (47.0%) 3 3 (66.7%)

6 chg 6 6 (100%) 5 5 (100%) 1 0 (0%) 0 0

7 chg 0 0 0 0 0 0 0 0

1000 smpls

3 chg 843 710 (84.2%) 834 685 (82.1%) 648 409 (63.1%) 431 321 (74.5%)

4 chg 522 479 (91.2%) 473 426 (90.1%) 241 173 (71.8%) 127 105 (82.7%)

5 chg 258 253 (98.1%) 202 195 (96.5%) 73 59 (80.8%) 30 28 (93.43%)

6 chg 101 100 (99.0%) 65 65 (100%) 23 20 (87.0%) 3 3 (100%)

7 chg 24 24 (100%) 13 13 (100%) 7 6 (85.7%) 0 0

5000 smpls

3 chg 1011 980 (97.0%) 1005 979 (97.4%) 1090 914 (83.8%) 981 908 (92.6%)

4 chg 993 973 (98.0%) 995 976 (98.1%) 913 837 (91.7%) 767 744 (97.0%)

5 chg 950 942 (99.2%) 994 929 (98.4%) 680 648 (95.3%) 478 474 (99.2%)

6 chg 816 812 (99.5%) 800 797 (99.6%) 409 398 (97.3%) 228 228 (100%)

7 chg 625 625 (100%) 564 564 (100%) 177 175 (98.9%) 75 75 (100%)

10000 smpls

3 chg 1015 998 (98.3%) 1003 997 (99.4%) 1125 976 (86.8%) 1016 973 (95.8%)

4 chg 1002 998 (99.6%) 1000 997 (99.7%) 1009 958 (95.0%) 937 915 (97.7%)

5 chg 995 993 (99.8%) 995 993 (99.8%) 913 888 (97.3%) 752 746 (99.2%)

6 chg 971 970 (99.9%) 959 958 (99.9%) 725 715 (98.6%) 494 494 (100%)

7 chg 906 906 (100%) 856 856 (100%) 493 487 (98.8%) 208 208 (100%)

Table 8.5: Results for the alignment detection algorithm for a trace whose H parameter changes from 0.7

to 0.8, analyzed with the DTWT-ICSS and DTWT-SIC methods (near sym b and qshift b filters). The

true changes are defined as those around ± resolution/2 positions around the true change position.

comparable to those obtained by the ICSS method. Taking the aforementioned parameters,

we get the histograms presented in Figure 8.18, where the change points appear well centered

and slightly dispersed around the true change position k = 131072.

• In the H = 0.7 → 0.8 case the tradeoff is attained with a higher resolution value of 5000

samples, and with a quorum of up to 5 aligned changes for the DTWT-ICSS, while the SIC

method needs to lower the quorum to 3 alignments. With these parameters we get more than

90% of the true change points. This lack of performance (a higher resolution and a lower

quorum) is obviously caused by the much smoother H change, which causes the variances at

every scale to vary much less than in the H = 0.5 → 0.9 and therefore more difficult to detect.

• The histograms shown in Figure 8.19 illustrate the higher dispersion (recall the different

resolutions used in the X axis) and even some (slightly) positive bias (i.e., the detected

changes tend to be to the right of the true change position k = 131072) for the H = 0.7 → 0.8

case. Therefore, the detection of smooth H changes will always suffer a delay (in samples, or

in time if a progressive algorithm was used) when compared to an abrupt H change.
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8.7 Application to real traffic traces

We now apply our methods to the Bellcore dataset traces. As we did in the previous chapters, first

we will analyze the distribution of the DTWT coefficients and then we will apply the segmentation

method.

8.7.1 Statistical distribution of the DTWT coefficients

Figure 8.20 and 8.21 show the histograms and probability plots for the modulus of the DTWT

when applied to BC-pAug89 and BC-OctExt traces (aggregated at 10 ms and 1 s, respectively), while

Table 8.6 presents the Generalized Gaussian shape parameters estimated for the distributions. The

normality plots have been omitted, due to the clear non-Gaussianity that can be deduced from the

histograms and the table (a Chi-square with 2 or 3 degrees of freedom could be, again, a better

model for such distributions).

In terms of the GGD shape parameter, BC-pAug89 can still be considered close to Gaussian at

the higher scales. On the other hand, BC-OctExt is far from Gaussianity. This fact can strongly

influence the segmentation algorithm.

Figure 8.20: Histograms of the modulus of the DTWT coefficients of the BC-pAug89 trace (aggregated at

10 ms) analyzed with near sym b and qshift b filters. From left to right, the analysis for the coefficients

at scales j = 1, j = 5 and j = 10.

Figure 8.21: Histograms of the modulus of the DTWT coefficients of the BC-OctExt trace (aggregated at

1 s) analyzed with near sym b and qshift b filters. From left to right, the analysis for the coefficients at

scales j = 1, j = 4 and j = 8.
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j = 1 j = 5 j = 10 j = 1 j = 4 j = 8

BC-pAug89 1.46 1.44 1.90 BC-OctExt 0.89 0.78 0.96

Table 8.6: GGD shape parameter of the DTWT decomposition of the Bellcore traces.

8.7.2 Analysis of the Bellcore traces

Figures 8.22 and 8.23 show the DTWT-ICSS and DTWT-SIC segmentations of the BC-pAug89

trace, at the 99% significance level, while Figures 8.24 and 8.25 present the segmentation of the

BC-OctExt trace. The analysis has been performed at different resolutions and quorums, in order

to assess the influence of those parameters.

The main conclusions are:

• Compared with the DWT and MODWT-based methods, DTWT does not suffer from the

noise at the lower scales that made us propose to ignore the first scale (the j1 parameter).

DTWT does not need such modification of the algorithm.

• Though the methods are not directly comparable due to the different filter sets and param-

eters, at the higher scales DTWT is less noisy than MODWT but still detects more changes

than the DWT, thus extending its power to the lower frequencies.

• The time evolution of the Hurst parameter is tracked again with good results, in terms of

the (almost non-existing) overlapping of the confidence intervals of the H segments. The

only cases where this rule is broken are the beginning (0 < k < 50000) and the middle

(190000 < k < 260000) of both the BC-pAug89 trace for both the DTWT-ICSS and the

DTWT-SIC. In these cases we are detecting a traffic variance change instead of a Hurst

parameter change, as can be confirmed from the variance plot. The BC-OctExt is, as was

stated in previous chapters, much more variable and their H-constant segments do not overlap.

• Both the DTWT-ICSS and DTWT-SIC methods track quite well the changes of the Hurst

parameter shown in the constant-length H analysis. The tracking is especially good for the

case of the BC-OctExt trace and acceptable for the BC-pAug89 trace, though in the latter

some H peaks are neglected, such as the H ∼ 0.5 region around 30000 < k < 35000, which

was not always detected by the other methods. For example, DWT-ICSS was able to detect it

in Figures 6.44, 6.45 and 6.46, but was missed by the DTWT-SIC at the 99% significance level

in Figures 6.51, 6.52 and 6.54 and barely detected in Figure 6.53 with the 95% significance

level. Here we have an example of the role of the significance level of the variance change

detection method as the sensitivity of the overall method.

• Comparing the segmentation results to those offered by the other transforms, some specific

H-constant regions (such as 190000 < k < 245000 and 260000 < k < 305000 for BC-pAug89,

and 63000 < k < 80000 for BC-OctExt) are well localized by the DTWT, as they were (at

least for some combinations of the parameters) by the DWT and the MODWT.
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Figure 8.22: Segmentation of the BC-pAug89 trace with the DTWT-ICSS method at the 99% significance

level with resolution = 1000 samples and quorum = 5 aligned changes.
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Figure 8.23: Segmentation of the BC-pAug89 trace with the DTWT-SIC method at the 99% significance

level with resolution = 5000 samples and quorum = 3 aligned changes.
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Figure 8.24: Segmentation of the BC-OctExt trace with the DTWT-ICSS method at the 99% significance

level with resolution = 1000 samples and quorum = 5 aligned changes.
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Figure 8.25: Segmentation of the BC-OctExt trace with the DTWT-SIC method at the 99% significance

level with resolution = 1000 samples and quorum = 5 aligned changes.
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8.8 Summary of the chapter

The topic of this chapter has been how to apply the Dual Tree (Complex) Wavelet Transform

(DTWT) to our joint wavelet-VCD algorithm. The DTWT appeared as an interesting candidate

since it falls somewhere in the middle of the correlation-vs-time-invariance trade-off of which the

DWT and the MODWT represent the extremes.

We started by discussing how to interpret the complex nature of the transform, and through an

empirical statistical test it was proven that computing the modulus of the transform gave better

results than treating the two dual trees separately. The test also gave us the opportunity to compare

the performance of the DTWT-modulus approach with the already studied DWT-based methods,

finding that DTWT localization is better while maintaining approximately the same power as the

DWT methods.

Having validated the DTWT-modulus approach, we started with the systematic characterization

of its behavior, though not all the tests done in Chapter 6 to the DWT were repeated here. One

of the first results was the finding of a Chi-square-type distribution in the modulus of the DTWT

coefficients, as expected. Although this fact could influence the performance of the variance change

detectors, the validation performed with synthetic traces has shown some differences in the perfor-

mance of the algorithms. When it came to characterizing the DTWT methods when a variance or

a Hurst parameter change is present, we found different performances for ICSS and SIC, behaving

the former better than DWT-ICSS and the latter worse than DWT-SIC. Our conclusion was that

SIC suffered more from the non-Gaussianity of the DTWT modulus than its counterpart. ICSS

seems to be more distribution-independent than SIC, though the authors of both variance change

detection methods ask for Gaussianity at their inputs.

Finally, the DTWT-mod-ICSS and DTWT-mod-SIC methods were applied to the usual Bellcore

traffic traces, finding that the results found with the DTWT methods are comparable to the best

ones obtained by the DWT and much better than those found with the MODWT.

To sum up, the DTWT-ICSS methods provide comparable or slightly better performance (in

terms of amount of detected change points, and sensitivity to resolution and quorum changes) than

DWT-ICSS, while DTWT-SIC results are a bit worse than those of the DWT-SIC.



Conclusions and topics for future

research

Conclusions

The question answered by this thesis is: how to deal with the estimation of the fractal parameters

of network traffic when such parameters are not stationary? Our answer has consisted of reviewing

the work done by other authors, exploring different approaches, and developing algorithms capable

of segmenting traffic in regions whose scaling parameters remain (approximately) constant.

We started with the state of the art review of the field of network traffic modeling [RSed],

analyzing the evidences of the presence of scaling properties that cannot be captured by traffic

models based on Poissonian or Markovian stochastic processes, a fact that has strong implica-

tions for network performance. On the other hand, the presence of scaling is encouraging for the

development of new fractal-aware mechanisms such as traffic predictors, congestion control and

resource-provisioning algorithms. Fractality has been found in several elements of IP networks

(traffic sources, applications and services, protocols, file distributions, and users’ behavior) and is

here to stay. Moreover, the intrinsical non-stationarity of Internet traffic makes the fractal param-

eters change along time. This fact highlights the need for adaptive, scaling-change-aware network

algorithms. Such algorithms will need a monitoring block at the input, capable of detecting the

changes of the parameters. The review of the literature regarding the non-stationarity of the scal-

ing parameters of traffic has revealed the existence of few algorithms that deal with this issue, and

the fact that most of them work in off-line mode and apply a constant-length window approach.

We argue that a more flexible, real-time-oriented estimator should be developed. That is why have

tried to develop wavelet-based algorithms capable of segmenting the traffic into regions with a

homogeneous variance structure (which in turn are scaling-constant).

Our segmenting algorithm is composed of three blocks: a wavelet transform, a variance change

detection method applied to each of the wavelet subbands, and a clustering and alignment detection

method based on the Hough Transform [Min05, RMSP05b, RMSP05a, RMS06]. The segmenter

and is able to locate the simultaneous change of variance across scales, which can either correspond

to a variance change or to a Hurst parameter change. The output of the method is a piecewise

267
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segmentation of var(t) and H(t). Our approach is more general than the constant length window-

based methods, since we can localize the variance-transition points to any position and scale. In

addition, we can monitor the second order nonstationarities of the time series (both for the whole

process or scale-by-scale).

The choice of the DWT as the tool for the study of scaling processes is justified due to its

multiresolution analysis capabilities. Abry and Veitch exploited these features in their LogScale

Diagram (LD), which is widely recognized as the best and most efficient estimator of the scaling

parameters. On the other hand, DWT’s resolution coarsens at the higher scales, and it lacks of

shift invariance, thus making the MRA dependent on the time shifts of the original signal. The

non-orthogonal, time-redundant MODWT is an alternative to the DWT due to its scale-constant

resolution and its shift invariance, but at the price of a scale-dependent correlation. The WPT is

another frequency-redundant transform which can be considered the counterpart of the MODWT

in the frequency domain.

The Wavelet Packet Transform allows for total flexibility in choosing the transform basis, either

orthogonal, incomplete or overcomplete. This transform opens the way to applying a time-varying

basis analysis in which the signal is studied with a subband decomposition scheme that adapts to

the spectral properties of the time series under study. We have developed a WPT-based estimator

based on a graphic tool called the Wavelet Packet variance map [RS04a, RS04b]. Our intention

was to use it jointly with the real-time splitting algorithm capable of performing a progressive

orthogonal tiling, which would compute the best basis for the WPT decomposition as the traffic

process evolves [RS02], but we stopped the development due to the problems found when trying to

define the cost function for the basis choice, and turned our attention towards a time-dependent

analysis of the variances at each scale. Nevertheless, the WPT-based estimator is a step ahead

which provides several modes of estimation (with a limited or global subband set). The WPT-

based analysis applied to the Bellcore traces has shown clear evidence of the non-stationarity of

their scaling parameters [RS04a, RS04b, Min05].

Coming back to our time-segmenting approach, and since both the DWT and the MODWT

represent extremes in the balance between orthogonality and redundancy, we explored the signal

processing literature looking for other transforms that could provide a trade-off between correlation

and time resolution, finding two candidates: the DTWT and the DDDWT. They both provide near-

time-shift invariance and a moderated correlation (being the DTWT better than the DDDWT),

while effectively doubling the sampling rate of the classical DWT.

Regarding the variance change detection algorithms, we identified the ICSS and SIC statistics

as good candidates and provided an empirical assessment of their power in two different situations:

uncorrelated and correlated processes. The performance comparison has been carried out in terms

of the ratio of detected change points, its mean position and its dispersion. The most important

conclusion is the important role of both the significance level at which the variance change test is

performed and the variance change ratio. Regarding the goodness of each method we concluded

that no technique is definitively better: for the uncorrelated case ICSS performs slightly better than
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SIC at the lower variance ratios, while SIC outperforms ICSS at the medium and higher variance

ratios. When the input signal is correlated SIC behaves better than ICSS, especially in terms of the

amount of false changes. Since the alternative wavelet transforms we use in our methods (MODWT,

DTWT) produce a correlated output, SIC seems to be better suited to our purposes than ICSS,

but its performance is not as different as to abandon the latter.

The last three chapters of the thesis describe the performance of our method when the DWT,

MODWT and DTWT are used with ICSS and SIC and the clustering and alignment method.

Several tests have been performed on synthetic and real traffic traces in order to compare the

results. Regarding the DWT case, the results for both ICSS and SIC are quite good [RS05a, RS05b,

RMSP05b], though DWT-SIC performs slightly better (in terms of amount of detected changes

and their localization) than DWT-ICSS for the more abrupt H changes, and vice versa. We have

shown the blindness of the method to mean changes (which would correspond to traffic level shifts)

and its sensitivity to variance and Hurst parameter changes. On the other hand, at the higher

scales few changes were found due to the lack of resolution and the smoothing effect of the DWT

variances. The results of the segmentation of the Bellcore dataset traces has found more variations

than those usually reported in the literature, but are still coherent with those obtained with the

constant-length window analysis. We have found no evidence of the correlation of traffic volume

and H, in contradiction to the results obtained by other authors. Finally, a progressive version

of our algorithm has been described. This modification can work either in cumulative or sliding

window modes, and is the first step towards the implementation of a real-time version of the

analyzer [RMCS04, RS05a, Min05, Per06].

Our first attempt to overcome the drawbacks of the DWT was to replace it with the MODWT,

which has the nice property of being time-invariant and allows for an accurate location of the changes

due to the high resolution at all scales. On the other hand, the decorrelation properties of the DWT

are lost due to the redundant, non-orthogonal nature of the MODWT. The correlation increases the

detection of false change points and must be corrected. We first tried with the Equivalent Degrees

of Freedom (EDOF) approach, which failed [ZR06]. We then tried forcing the significance level

and the minimum length to take unusual values. This approach can be mathematically questioned

since the values have been derived heuristically, but the results are comparable to those found with

the DWT [RS05c, RSdA05, RMS06]. For FGN traces MODWT-SIC performs slightly worse than

DWT-SIC (in terms of a higher resolution or a lower quorum in order to get similar detection

capability) but provides more valid changes at the higher scales.

Finally, we studied the Dual Tree Wavelet Transform (DTWT) due to its balance between a low

(though not null) correlation and a better resolution than DWT [ZR06]. The complex nature of

this transform presented an open question, since we could use the variance of both trees separately

or computing the variance of the modulus of the complex coefficients [RZ06]. The second approach

turned out to outperform DWT in terms of the localization of the changes, while its statistical

power is still comparable to that of the DWT methods. In general, the DTWT-ICSS behaves better

than DWT-ICSS and DTWT-SIC worse than DWT-SIC. We identified the non-Gaussianity of the

DTWT modulus and the higher robustness of the ICSS to modifications of the input’s distribution
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as the reasons for this behavior. The results of the DTWT analysis of the Bellcore traces are

comparable to the best ones obtained by the DWT and much better than those found with the

MODWT.

One may argue about the validity of the values of the Hurst parameters found in the segments

obtained by our algorithms, since sometimes we return what in principle can be considered as

meaningless values (H < 0 or H > 1), but we have to consider that these strange values appear

only when the segments are very short (thus reducing the statistical meaning of the estimation,

which is highlighted in the large confidence intervals associated) or in the case of traffic volume

non-stationarities. Nevertheless, we have proven that, in general, the results obtained by our seg-

mentation methods are coherent with those found by the constant-length based methods.

To sum up, we have developed a family of wavelet-based segmentation algorithms capable of

tracking the evolution of the scaling parameters of traffic across time that have been validated them

with synthetic traces. The DWT-based segmenter returns good results with both ICSS and SIC, but

is outperformed by the DTWT-ICSS. The methods have been applied to real traffic traces which

were studied by other authors in a scaling-stationary fashion, finding a highly changing behavior

and confirming the nonstationarity of their scaling parameters.

Topics for future research

What follows is a brief list of the most promising paths that can be followed from our previous

research.

Non-Gaussian-aware algorithms

One of the problems we faced in our experiments was the non-normality of the wavelet coefficients.

We identified the Generalized Gaussian Distribution as a better model for DWT and MODWT

coefficients of real traces, and the Chi-square distribution for the modulus of the DTWT. Since the

variance change detectors we use (ICSS and SIC) assume a Gaussian distribution at their input,

we are aware of the fact that we walk a mathematically insecure path, though from the results

obtained with synthetic tests traces we are reasonably sure of the correctness our methods.

To our knowledge, few works have considered the case of variance change detection in non-

gaussian time series. Among them, the most important for our interests was carried out by Chen

and Gupta [CG00], who studied the asymptotic distribution of the SIC statistic under restricted

non-normality (it is assumed that the first four moments of the input random variable behave as

those of the Gaussian distribution, conditions that seem to be rather technical and to not have

an important influence in the final result) and found it to follow the same distribution as in the

Gaussian input case. It would be interesting to try our methods with this generalized SIC statistic.

Anyway, the expressions for the critical level of the generalized method are almost identical to those
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developed for the Gaussian case. That is why we are reasonably sure of the results obtained with

the Gaussianity assumption.

No equivalent study to the aforementioned has been found for the ICSS, but since both methods

rely on the Cumulative Sum of Squares (CSS) statistic, we hypothesize that the behavior of the

ICSS under non-normality will not deviate too much from the results obtained in the Gaussian

case.

Extension of the LogScale Diagram to the alternative wavelet transforms

The Wavelet Packet Variance Map introduced in Chapter 3 was an extension of the LD to the

Wavelet Packet transform. Though the expressions we provided for the WPT estimator are correct,

the method remains to be tuned with the analytical derivation of the bias correction terms gj,m

(where j is the scale index and m is the subband index) that were identified by Abry and Veitch

as the solution for the inaccuracy introduced by the fact that the expectation of the logarithm

is not equal to the logarithm of the expectation; E[log()] 6= log(E[]). However, the WPT results

presented in Section 3.3.1 will only be slightly affected by this omission since, like gj for the LD,

the correction gj,m is small. Actually, in the first implementations of the LogScale Diagram the

correction terms were neglected and the bias introduced was assumed [AV98]. Another open issue

for the WPT estimator was the lack of implementation of a weighted curve-fitting algorithm3 for

the global WPT estimator (the one that uses all possible subbands for the estimation). The use of

a weightless fitter redounded in some bias.

The development of an MODWT- or DTWT-based LD is also appealing (though mathemati-

cally complex), since it would allow us to estimate directly the scaling parameters of the detected

segments, instead of first segmenting with the alternative wavelets and then performing the classical

DWT-based LD estimation, as we do today. Of special interest would be the analytical expressions

of the confidence intervals for the estimator.

Best-basis WPT-based segmenter

Our original idea regarding the use of the WPT-based estimator was to use it in order to compute

in real time the optimal decomposition basis and therefore maximize the decorrelation properties

of the wavelet analysis, and then perform the scaling parameters estimation [RS02]. Figure 8.26

illustrates the dynamical best basis selection. We already identified a fast splitting algorithm capable

of performing a progressive orthogonal tiling developed by Sola and Sallent [SSR94] that could

work jointly with the WPT-based estimator. Certain issues should be solved, being one of the most

important the choice of the cost function of the best basis algorithm.

Regarding the the partial (in the sense of not using the full (m, j) dyadic subband set generated

by the WPT) estimator, we already mentioned in Chapter 3 the possibility of using them as fast,

3actually, a 3-D surface-fitting algorithm.
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Figure 8.26: Comparison of the static DWT analysis (left) and the time-changing WPT base selection

capability (right).

possibly not-so-accurate estimators. In the incomplete frequency decompositions the number of

available samples for the regression is lower, a fact that speeds the process. Despite their lack of

accuracy, these estimations could be useful in certain time-critical situations (where the speed of

the estimation is more important than its precision), due to their less intensive computational load.

This is another topic for future research.

Finally, we could consider the use of the MODWPT in order to develop a higher-time-resolution

WPT variance map estimator, joining the time redundancy of the Maximal Overlap approach and

the subband redundancy of the wavelet packets. We should, though, correct the time correlation

that we already identified in the MODWT.

Real-time segmentation

Chapter 6 presented a first version of the progressive, near-real-time DWT-based estimator (see

Section 6.10). The main problem we faced was the unpredictability of the amount of iterations of

the variance change detection algorithms that were needed for a certain trace, and the fact that a

criterium should be defined in order to stop the computation in case it was taking too much time

to run in real time. Though our Matlab implementation of ICSS and SIC was highly optimized,

a C/C++ version could be further improved by a skilled programmer, and the same goes for the

Hough transform and its clustering and alignment algorithm (though this one is run just once per

estimation). It would also be interesting to perform a detailed study of the detection delay in which

our method incurs, i.e. the amount of lookahead samples4 that the method needs in order to detect

a change.

Another open question is the optimal length of the sliding window that goes over the trace,

in order to minimize the risk of not detecting true change points. Finally, we should investigate

the distribution of the lengths of the variance- and H-constant segments in real traffic traces, and

4We borrowed this term from the audio coding field, where it denotes the amount of future audio samples needed

in order to efficiently compress the present audio frame in vocoders (such as G.723.1) and perceptual codecs (such

as MP3).
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characterize it. This would also give us some clues about how to customize or tune the algorithm’s

parameters.

All these methods should be implemented in a real system equipped with either a standard

network card or a dedicated, high performance monitoring systems such as the Endace DAGr

cards5. Some of the methods presented in this thesis have been (partially) implemented in standard

Gigabit Ethernet cards [RMCS04] (with which we managed to analyze and generate fractal traffic

at 500-600 Mbit/s) and a couple of DAG cards capable of working at full 1 Gbit/s speed [Per06].

Other wavelet transforms for the time-segmenting method

The wavelet-based signal processing field is an exciting and very active research area which still

produces relevant contributions. Apart from the MODWT and the DTWT, other wavelet transforms

appear as promising candidates to be used in our algorithm:

• The Double Density Discrete Wavelet Transform (DDDWT) [Sel01] is similar to

the DTWT in time resolution (twice that of the DWT), near shift-invariance, and a reduced

correlation [Sel01, SA04]. Appendix A provides a brief introduction to the DDDWT and its

statistical properties. We prioritized the use of the DTWT due to its superiority regarding

shift-invariance and correlation, but we think the DDDWT deserves some attention in order

to assess its behavior with scaling processes.

• The Double Density Dual Tree Discrete Wavelet Transform (DDDTDWT) [Sel04],

also developed by Ivan Selesnick, mixes the Dual Tree and the Double Density concepts. It

is a dyadic wavelet tight frame based on two scaling functions and four wavelet filters. The

output of the DDDTDWT is oversampled by a factor of 4 (2 due to the double density and 2

due to the complex dual tree), and is almost shift-invariant. We could compute the modulus

of the complex output while still maintaining the double density resolution.

• The Higher Density DWT or Expansive DWT [Sel06]. Yet another of Selesnick’s in-

vention, the Expansive DWT is an almost shift-invariant, tight dyadic wavelet frame with

two generators that doubles the sampling rate both in time and frequency, thus creating not

only intermediate time samples (as the DDDWT does) but also intermediate scales, which in

our opinion could be a very good way to improve the accuracy of the LogScale Diagram by

having more resolution at both axes of the time-frequency plane. Figure 8.27 illustrates the

tiling produced by the Expansive DWT.

For each of these carrying at least a preliminary study (including its sensitivity to mean, variance

and Hurst parameter changes, together with an empirical assessment of the power of the test) would

be worth trying.

5http://www.endace.com
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Figure 8.27: Comparison of the time-frequency plane sampling performed by the DWT, the MODWT, the

DDDWT and the Higher density or Expanded DWT.

Extension to multifractal processes

Abry and Veitch extended their LogScale Diagram to multifractal processes [VA] by generalizing

the variance computation to the qth moment, and performing a linear regression in each q. In

theory, we could easily extend our segmentation methods by performing q parallel qth change

detection multiscale procedures and aligning the results, but to our knowledge no one has yet tried

developing higher moments’ change detectors.

Since both ICSS and SIC rely on the cumulative sum of squares (CSS) statistic, it seems straight-

forward to generalize it to a cumulative (absolute) sum of the qth moment. The critical level and

significance values should be obtained by Montecarlo simulations, since no analytical work seems

to have addressed this topic.
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Atzori et al [AAI05, AAI06] recently developed an accuracy-based approach for the real-time

estimation of multifractality, where the window length is variable and related to the confidence

interval of the estimation. The method accumulates samples until the confidence interval of the

multifractal estimator is below a certain value determined by the user, and then the estimation is

performed. The window length automatically adapts to the statistical properties of data. Comparing

the performance of this method and ours (in the case of monofractal traffic) would be interesting.

Besides, the accuracy-based segmentation could be applied to our multiresolution analysis with the

alternative wavelet transforms, and check the possible improvement of the results.
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Appendix A

The Double Density Discrete

Wavelet Transform (DDDWT)

A.1 Another framelet with redundancy 2

The Dual Density Wavelet Transform was recently developed by Ivan Selesnick [Sel01, SA04].

Technically, it is a symmetric wavelet tight frame with two generators. The main properties of this

transform are:

• Its tight nature ensures that Parseval’s Theorem holds and an ANOVA can be performed;

• It is almost shift-invariant, though in this aspect is not as good as the Dual Tree (Complex)

Wavelet Transform (DTWT);

• It is overcomplete (redundant) by a factor of 2, independent of the number of scales over

which the signal decomposition is performed;

• It employs one scaling function and two different wavelets φ1(t) and φ2(t), which are offset

by half a sample.

In terms of redundancy, it is similar to the DTWT designed by Kingsbury (see Section 2.8),

since it outputs twice the samples present at the input. However, its time-invariance is not as good

as that of the DTWT.

A.2 Filter bank implementation

The basic block for the pyramidal implementation of the DDDWT is a three-channel filter bank

with a low-pass output and two band-pass and high-pass subbands, as shown in Figure A.1. The
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low-pass branch corresponds to a scaling function φ(t) (filter h(k)), while the band-pass and high-

pass branches are related to two mother wavelets ψ1(t) and ψ2(t) (filters g1(k) and g2(k)). This

basic filter bank is iterated in the low-pass output, in a similar way as the DWT works. Figure A.2

shows the full filter bank implementation of the DDDWT.

Figure A.1: The basic filter bank of the DDDWT.

Note that the basic filter bank is oversampled by a factor of 3/2, not by 2. Therefore, why should

the transform be called double density? This is because the iteration makes the redundancy factor

approach 2: a J = 2 filter bank is oversampled by 7/4, a J = 3 filter bank is oversampled by 15/8,

and so on. A general decomposition at level J is oversampled by 2J−1
J = 2− 1

J , and as J →∞, the

factor tends to 2.

Figure A.2: The filter bank implementation of the DDDWT.

A.3 DDDWT filters

The description of the construction of the DDDWT filters and their associated wavelets and scaling

function is out of the scope of this document; those interested can consult the details in [SA04].

The three-filter bank has more free parameters than the usual two-filter bank, thus expanding

the possibilities for designing the wavelets. We will only comment that the options explored by

Selesnick include some design constraints such as the perfect reconstruction property / energy

preserving condition, and the presence of some symmetries (such as ψ1(t) = ψ2(N − t), where
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Figure A.3: An example of a DDDWT filter set. Impulse response (left) and frequency response (right) for

the low-pass scaling filter g(n), and the band-pass and high-pass wavelet filters h1(n) and h2(n).

N is the support of the wavelet) which make the design easier. Other choices include imposing

the same constraints used for building the Daubechies DWT wavelets: minimal length under the

constraint that up to K moments equal zero. Of course, now both wavelets have to verify the

conditions, instead of having just one wavelet. This ensures the blindness to polynomial trends that

we mentioned in Section 2.4.3. Figure A.3 illustrates the filter set corresponding to a DDDWT of

the first type, with symmetrical wavelet mothers, as can be seen in Figure A.4.

Figure A.5 shows an example of the output of the first stage of the filter bank of the DDDWT,

using the filters displayed in Figure A.3. The test signal is composed of two steps surrounded by

zero level. It can be seen that intuitively the behavior is similar to other wavelet transforms: the

Figure A.4: The ψ1(t) and ψ2(t) wavelets corresponding to the DDDWT filter set shown in Figure A.3.
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Figure A.5: A test signal x(n) and its DDDWT analysis at the first stage of the filter bank.

approximation coefficients keep the lowest frequency components of the signal (the steps), while the

wavelet coefficients match the higher frequency components (step boundaries). Figure A.6 shows

another example, with a full J = 3 decomposition of a signal composed by some segments including

zero level, a ramp (with a smooth, low-frequency component and an abrupt end) and a step. Note

that the length of the original signal is N = 128, while the total number of wavelet coefficients is

N + N
2 + N

8 + N
8 = 15N

8 = 240.

A.4 MRA and ANOVA

As happens with the other wavelet transforms, the DDDWT is able to perform a multiresolution

analysis, with the only difference being that two details are generated for each scale. Therefore,

a signal X(t) is decomposed in terms of an approximation at level J , AJ(t) and a set of details

Dj,1(t) and Dj,2(t). Dj,1(t) is related to the band-pass wavelet ψ1(t), while Dj,2(t) corresponds to

the high-pass wavelet ψ2(t).

X(t) = AJ(t) +
J∑

j=1

(Dj,1(t) +Dj,2(t)) (A.1)

Similarly to the DWT and MODWT, the jth detail of X(t) corresponds to the information that is

removed when going from one approximation level to the next: Dj,1(t)+Dj,2(t) = Aj−1(t)−Aj(t).
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Figure A.6: A test signal x(n) and its DDDWT analysis at level J = 3.

Figure A.7: Example of an MRA decomposition with the DDDWT.
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Figure A.8: Illustration of the near-shift-time invariance of the DDDWT. Sixteen time-shifted versions of

a step function are analyzed and decomposed into a set of details at levels j = 1 . . . 4 and an approximation

at level J = 4.

Figure A.9: Autocorrelation functions of DDDWT detail coefficients of a 32768-sample white noise signal.
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Equation A.1 can then be rewritten as

X(t) = D1,1(t) +D1,2(t) +A1(t)

= D1,1(t) +D1,2(t) +D2,1(t) +D2,2(t) +A2(t)

= D1,1(t) +D1,2(t) +D2,1(t) +D2,2(t) +D3,1(t) +D3,2(t) +A3(t)

...

=
J∑

j=1

[Dj,1(t) +Dj,2(t)] +AJ(t)

Regarding the analysis of variance, the situation is similar to that found with MODWT. An ANOVA

can be performed on the transform coefficients aj,k, dj,1,k and dj,2,k, and not on the details and

approximations.

‖X‖2 =
∑

k

a2
J,k +

J∑
j=1

∑
k

[d2
j,1,k + d2

j,2,k] 6= ‖AJ‖2 +
J∑

j=1

[‖Dj,1‖2 + ‖Dj,2‖2] (A.2)

Figure A.7 shows an MRA decomposition of the same signal used in Figure A.6.

A.5 Shift invariance

As aforementioned, the shift invariance properties of the DDDWT are not as good as those of the

MODWT (that is fully shift-invariant) and are slightly worse than those of the DTWT. Figure A.8

shows the same analysis performed for the DTWT in Section 2.8.4.

A.6 Correlation

Regarding the correlation issue, the results provided by the DDDWT are also a bit worse than

those provided by the DTWT, but much better than those of the MODWT. Figure A.9 shows

the autocorrelation function of the detail coefficients of the DTWT of a white noise signal. An

interesting feature is that di,2(j, k) seem to be less correlated than di,1(j, k).
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Acronyms

ADSL Asymmetric Digital Subscriber Line

ANOVA Analysis of Variance

ATM Asynchronous Transfer Mode

CAC Connection Admission Control

CIPP Correlated Interarrival Poisson Process

CSS Cumulative Sum of Squares

CWT Continuous Wavelet Transform

DDDTDWT Double Density Dual Tree (Complex) Discrete Wavelet Transform

DDDWT Double Density Discrete Wavelet Transform

DFT Discrete Fourier Transform

DTWT Dual Tree (Complex) Discrete Wavelet Transform

DWT Discrete Wavelet Transform

DWPT Discrete Wavelet Packet Transform

EDOF Equivalent Degrees of Freedom

FBM Fractional Brownian Motion

FGN Fractional Gaussian Noise

FIR Finite Impulse Response (filter)

FTP File Transfer Protocol

GGD Generalized Gaussian Distribution

HP High Pass

H-SS Self-Similar process with Hurst parameter H

H-SSSI Self-Similar process with Stationary Increments with Hurst parameter H

ICSS Iterated Cumulative Sum of Squares

IP Internet Protocol

LA Least Asymmetrical (wavelets)

LAN Local Area Network

LD LogScale Diagram

LP Low Pass

LRD Long-Range Dependent (process)

mFBM Multifractional Brownian Motion

mFGN Multifractional Gaussian Noise
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MLE Maximum Likelihood Estimator

MODWPT Maximal Overlap Discrete Wavelet Packet Transform

MODWT Maximal Overlap Discrete Wavelet Transform

MMPP Markov Modulated Poisson Processes

MPEG Moving Picture Experts Group

MRA Multiresolution Analysis

MVUE Minimum Variance Unbiased Estimator

NIC Network Interface Card

P2P Peer to Peer

PDF Probability Density Function

PDF Power Spectral Density

QoS Quality of Service

RTT Round Trip Time

SIC Schwarz Information Criterion

SRD Short-Range Dependent (process)

SS Self-Similar (process)

SSSI Self-Similar (process) with Stationary Increments

STFT Short Time Fourier Transform

SWT Stationary Wavelet Transform

TCP Transmission Control Protocol

UDP User Datagram Protocol

VBR Variable Bit Rate

VCD Variance Change Detection

WAN Wide Area Network

WDM Wavelength Division Multiplexing

WPT Wavelet Packet Transform

WWW World Wide Web
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Rodŕıguez-Dagnino. A Practical Procedure to Estimate the Shape Parameter in

the Generalized Gaussian Distribution. Technical report CIMAT I-01-18, Centro de
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[RS04b] David Rincón and Sebastià Sallent. Characterizing Fractal Traffic with Redundant

Wavelet-based Transforms. In Proceedings of the First Workshop New Trends in

Modelling, Quantitative Methods and Measurements - Design and Engineering of

the Next Generation Internet, pages 361–371, June 2004.
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